CONVERGENCE OF AN INVERSE ITERATION METHOD FOR NON-LINEAR ELLIPTIC EIGENVALUE PROBLEMS

被引:16
作者
GEORG, K
机构
[1] Institut für Angewandte Mathematik, Bonn, D-5300
关键词
Subject Classifications: AMS(MOS): 65N25; 35J60; 49D20; CR:; 5.17;
D O I
10.1007/BF01397650
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In recent years, a group of inverse iteration type algorithms have been developed for solving nonlinear elliptic eigenvalue problems in plasma physics [4]. Although these algorithms have been very successful in practice, no satisfactory theoretical justification of convergence has been available. The present paper fills this gap and proves for a large class of such problems and a simple version of such algorithms that linear convergence to a local maximum of a certain potential is obtained. © 1979 Springer-Verlag.
引用
收藏
页码:69 / 74
页数:6
相关论文
共 7 条
[1]   FIXED-POINT EQUATIONS AND NONLINEAR EIGENVALUE PROBLEMS IN ORDERED BANACH-SPACES [J].
AMANN, H .
SIAM REVIEW, 1976, 18 (04) :620-709
[3]  
HAGENOW KUV, 1973, 3RD P INT S TOR PLAS
[4]   COMPUTATION OF IDEAL MHD EQUILIBRIA [J].
LACKNER, K .
COMPUTER PHYSICS COMMUNICATIONS, 1976, 12 (01) :33-44
[5]  
MEYERSPASCHE R, 1976, NUMERICAL TREATMENT
[6]  
NECAS I, 1975, T MATEM I AN SSSR, V134, P235
[7]   VARIATIONAL METHODS FOR NONLINEAR ELLIPTIC EIGENVALUE PROBLEMS [J].
RABINOWITZ, PH .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1974, 23 (08) :729-754