LIMITING PROCEDURES FOR THE OPTICAL-PHASE OPERATOR

被引:35
作者
BARNETT, SM [1 ]
PEGG, DT [1 ]
机构
[1] GRIFFITH UNIV,DIV SCI & TECHNOL,NATHAN,QLD 4111,AUSTRALIA
关键词
D O I
10.1080/09500349214552141
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We examine some of the attempts to describe the phase of a single field mode by a quantum operator acting in the conventional infinite Hilbert space. These operators lead to bizarre properties such as non-random phases for the number states and experience consistency difficulties when used to obtain a phase probability density. Moreover, in these approaches operator functions of phase are not simply functions of a phase operator. We show that these peculiarities do not arise when the Hermitian optical phase operator is employed. In our opinion, the problems associated with the descriptions of phase in conventional infinite Hilbert space arise from the nature of the limiting process.
引用
收藏
页码:2121 / 2129
页数:9
相关论文
共 21 条
  • [1] ON THE HERMITIAN OPTICAL-PHASE OPERATOR
    BARNETT, SM
    PEGG, DT
    [J]. JOURNAL OF MODERN OPTICS, 1989, 36 (01) : 7 - 19
  • [2] QUANTUM-THEORY OF ROTATION ANGLES
    BARNETT, SM
    PEGG, DT
    [J]. PHYSICAL REVIEW A, 1990, 41 (07): : 3427 - 3435
  • [3] OPERATORS OF THE PHASE - FUNDAMENTALS
    BERGOU, J
    ENGLERT, BG
    [J]. ANNALS OF PHYSICS, 1991, 209 (02) : 479 - 505
  • [4] PHASE AND ANGLE VARIABLES IN QUANTUM MECHANICS
    CARRUTHERS, P
    NIETO, MM
    [J]. REVIEWS OF MODERN PHYSICS, 1968, 40 (02) : 411 - +
  • [5] Damaskinsky E. V., 1978, ACADEMIC RES J, V6, P59
  • [6] QUANTUM PHASE AND A Q-DEFORMED QUANTUM OSCILLATOR
    ELLINAS, D
    [J]. PHYSICAL REVIEW A, 1992, 45 (05): : 3358 - 3361
  • [7] GANTSOG T, IN PRESS PHYS REV A
  • [8] GARRISON JC, 1970, J MATH PHYS, V11, P2243
  • [9] PHASE OPERATOR AND PHASE FLUCTUATIONS OF SPINS
    GOLDHIRSCH, I
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1980, 13 (11): : 3479 - 3494
  • [10] Levy-Leblond J.-M., 1973, Revista Mexicana de Fisica, V22, P15