SMOOTH BOUNDARY-CONDITIONS FOR QUANTUM-LATTICE SYSTEMS

被引:61
作者
VEKIC, M
WHITE, SR
机构
[1] Department of Physics, University of California, Irvine
关键词
D O I
10.1103/PhysRevLett.71.4283
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a new type of boundary conditions, smooth boundary conditions, for numerical studies of quantum lattice systems. In a number of circumstances, these boundary conditions have substantially smaller finite-size effects than periodic or open boundary conditions. They can be applied to nearly any short-ranged Hamiltonian system in any dimensionality and within almost any type of numerical approach.
引用
收藏
页码:4283 / 4286
页数:4
相关论文
共 9 条
[1]   Metal theory [J].
Bethe, H. .
ZEITSCHRIFT FUR PHYSIK, 1931, 71 (3-4) :205-226
[2]  
Hardy GH., 1949, DIVERGENT SERIES
[4]   SOLITON LATTICE MODULATION OF INCOMMENSURATE SPIN-DENSITY WAVE IN 2-DIMENSIONAL HUBBARD-MODEL - A MEAN FIELD-STUDY [J].
KATO, M ;
MACHIDA, K ;
NAKANISHI, H ;
FUJITA, M .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1990, 59 (03) :1047-1058
[5]   NEBULA BOUNDARY-CONDITIONS IN MONTE-CARLO SIMULATIONS [J].
KOLAFA, J .
MOLECULAR PHYSICS, 1991, 74 (01) :143-151
[6]   SPIRALING ALGORITHM - COLLECTIVE MONTE-CARLO TRIAL AND SELF-DETERMINED BOUNDARY-CONDITIONS FOR INCOMMENSURATE SPIN SYSTEMS [J].
SASLOW, WM ;
GABAY, M ;
ZHANG, WM .
PHYSICAL REVIEW LETTERS, 1992, 68 (24) :3627-3630
[7]   INCOMMENSURATE ANTIFERROMAGNETISM IN THE 2-DIMENSIONAL HUBBARD-MODEL [J].
SCHULZ, HJ .
PHYSICAL REVIEW LETTERS, 1990, 64 (12) :1445-1448
[8]   DENSITY-MATRIX FORMULATION FOR QUANTUM RENORMALIZATION-GROUPS [J].
WHITE, SR .
PHYSICAL REVIEW LETTERS, 1992, 69 (19) :2863-2866
[9]   DENSITY-MATRIX ALGORITHMS FOR QUANTUM RENORMALIZATION-GROUPS [J].
WHITE, SR .
PHYSICAL REVIEW B, 1993, 48 (14) :10345-10356