A FORMAL LINEARIZATION PROCEDURE OF CONSTRAINED NONLINEAR AUTOMATIC LENS DESIGN-PROBLEMS .1. FORMULATION BY MEANS OF PENALTY-FUNCTION METHOD

被引:4
作者
TANAKA, K
机构
[1] R and D Headquarters, Canon Inc., Kawasaki-shi, Kanagawa-ken 211, 890-12, Kashimada
来源
JOURNAL OF OPTICS-NOUVELLE REVUE D OPTIQUE | 1990年 / 21卷 / 06期
关键词
AUTOMATIC LENS DESIGN;
D O I
10.1088/0150-536X/21/6/001
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
It is presented a process to linearize formally a constrained nonlinear automatic lens design problem, which is formulated by means of the penalty function method. It is also given the solutions derived by the QR factorization method.
引用
收藏
页码:241 / 245
页数:5
相关论文
共 20 条
[1]  
Bauer FL, 1965, NUMER MATH, V7, P338
[2]  
Bj?rck ?., 1967, BIT, V7, P1, DOI DOI 10.1007/BF01934122
[3]   DAMPING FACTOR FOR LEAST-SQUARES METHOD OF OPTTICAL DESIGN [J].
BUCHELE, DR .
APPLIED OPTICS, 1968, 7 (12) :2433-&
[4]   GREYS METHOD FOR NONLINEAR OPTIMIZATION [J].
CORNWELL, LW ;
PEGIS, RJ ;
RIGLER, AK ;
VOGL, TP .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1973, 63 (05) :576-581
[5]   QR TRANSFORMATION - A UNITARY ANALOG TO LR TRANSFORMATION .1. [J].
FRANCIS, J .
COMPUTER JOURNAL, 1961, 4 :265-&
[6]  
Francis J.G.F., 1962, COMPUT J, V4, P332, DOI DOI 10.1093/COMJN1/4.4.332
[7]   SINGULAR VALUE DECOMPOSITION AND LEAST SQUARES SOLUTIONS [J].
GOLUB, GH ;
REINSCH, C .
NUMERISCHE MATHEMATIK, 1970, 14 (05) :403-&
[10]  
GRIRARD A, 1958, REV OPT, V37, P225