A SHORT PROOF OF THE PLANARITY CHARACTERIZATION OF DEVERDIERE,COLIN

被引:24
作者
VANDERHOLST, H
机构
[1] Cwi, 1098 SJ Amsterdam
关键词
D O I
10.1006/jctb.1995.1054
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Colin de Verdiere introduced an interesting new invariant mu(G) for graphs G, based on algebraic and analytic properties of matrices associated with G. He showed that the invariant is monotone under taking miners and moreover, that mu(G) less than or equal to 3 if only if G is planar. In this paper we give a short proof of Colin de Verdiere's result that mu(G) less than or equal to 3 if G is planar. (C) 1995 Academic Press, Inc.
引用
收藏
页码:269 / 272
页数:4
相关论文
共 8 条
[1]  
BACHER R, 1994, MULTIPLICITES VALEUR
[2]   EIGENFUNCTIONS AND NODAL SETS [J].
CHENG, SY .
COMMENTARII MATHEMATICI HELVETICI, 1976, 51 (01) :43-55
[3]  
COURANT R, 1953, METHODS MATH PHYSICS, V1
[4]   NEW INVARIANT OF GRAPHS AND FLATNESS CRITERION [J].
DEVERDIERE, YC .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1990, 50 (01) :11-21
[5]  
DEVERDIERE YC, 1993, GRAPH STRUCTURE THEO, P137
[6]  
ROBERTSON N, 1995, J COMB THEORY B, V64, P105
[7]  
Robertson N., 1993, GRAPH STRUCTURE THEO, V147, P125
[8]  
ROBERTSON N, 1988, GRAPH MINORS, V20