ON THE LIMIT OF THE MARKOV BINOMIAL-DISTRIBUTION

被引:35
作者
WANG, YH
机构
关键词
D O I
10.2307/3213068
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let X//1, X//2, . . . be a Markov Benoulli sequence with initial probabilities rho of success and q equals 1 minus rho of failure, and probabilities 1 minus (1 minus pi ) rho , (1 minus pi 0 rho in the first row and (1 minus pi )(1 minus rho ), (1 minus pi ) rho plus pi in the second row of the transition matrix. If S//n equals SIGMA X//i, where the sum is from i equals 1 to n, then the limit distribution P left brace S//n equals k right brace is obtained when n approaches infinity , n rho approaches lambda .
引用
收藏
页码:937 / 942
页数:6
相关论文
共 11 条
[1]  
CHEN LHY, 1975, ANN PROBAB, V3, P535
[2]   NOTE ON ESTIMATION OF PARAMETERS IN A BERNOULLI MODEL WITH DEPENDENCE [J].
DEVORE, JL .
ANNALS OF STATISTICS, 1976, 4 (05) :990-992
[3]   MEANING OF BINOMIAL DISTRIBUTION [J].
EDWARDS, AWF .
NATURE, 1960, 186 (4730) :1074-1074
[4]  
JOHNSON NL, 1969, DISTRIBUTIONS STATIS
[5]   STATISTICAL INFERENCE IN BERNOULLI TRIALS WITH DEPENDENCE [J].
KLOTZ, J .
ANNALS OF STATISTICS, 1973, 1 (02) :373-379
[6]  
KLOTZ J, 1972, 6 P BERK S MATH STAT, V4, P173
[7]  
MOORE M, 1976, ER76R8 EC POL RAPP T
[8]  
MOORE M, 1979, ANN SCI MATH QUEBEC, V3, P119
[10]   RECONSTRUCTING PATTERNS FROM SAMPLE DATA [J].
SWITZER, P .
ANNALS OF MATHEMATICAL STATISTICS, 1967, 38 (01) :138-+