ROUS-SARCOMA VIRUS INTEGRASE PROTEIN - MAPPING FUNCTIONS FOR CATALYSIS AND SUBSTRATE-BINDING

被引:70
作者
BUSHMAN, FD
WANG, BB
机构
关键词
D O I
10.1128/JVI.68.4.2215-2223.1994
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Rous sarcoma virus (RSV), like all retroviruses, encodes an integrase protein that is responsible for covalently joining the reverse-transcribed viral DNA to host DNA. We have probed the organization of functions within RSV integrase by constructing mutant derivatives and assaying their activities in vitro. We find that deletion derivatives lacking the amino-terminal 53 amino acids, which contain the conserved H-X((3-7))-H-X((23-32))-C-X((2))-C (HHCC) Zn2+-binding motif, are greatly impaired in their ability to carry out two reactions characteristic of integrase proteins: specific cleavage of the viral DNA termini and DNA strand transfer. Deletion mutants lacking the carboxyl-terminal 69 amino acids are also unable to carry out these reactions. However, all deletion mutants that retain the central domain are capable of carrying out disintegration, an in vitro reversal of the normal DNA strand transfer reaction, indicating that the catalytic center probably lies within this central region. Another conserved motif, D-X((39-58))-D-X((35))-E, is found in this central domain. These findings,vith RSV integrase closely parallel previous findings with human immunodeficiency virus integrase, indicating that a modular catalytic domain is a general feature of this family of proteins. Surprisingly, and unlike results obtained so far with human immunodeficiency virus integrase, efficient strand transfer activity can be restored to a mutant RSV integrase lacking the amino-terminal HHCC domain by fusion to various short peptides. Furthermore, these fusion proteins retain the substrate specificity of RSV integrase. These data support a model in which the integrase activities required for strand transfer in vitro, including substrate recognition, multimerization, and catalysis, all lie primarily outside the aminoterminal HHCC domain.
引用
收藏
页码:2215 / 2223
页数:9
相关论文
共 35 条
[1]  
BERG JM, 1990, ANNU REV BIOPHYS BIO, V19, P405
[2]  
BURKE CJ, 1992, J BIOL CHEM, V267, P9639
[3]   RETROVIRAL DNA INTEGRATION DIRECTED BY HIV INTEGRATION PROTEIN INVITRO [J].
BUSHMAN, FD ;
FUJIWARA, T ;
CRAIGIE, R .
SCIENCE, 1990, 249 (4976) :1555-1558
[4]   DOMAINS OF THE INTEGRASE PROTEIN OF HUMAN-IMMUNODEFICIENCY-VIRUS TYPE-1 RESPONSIBLE FOR POLYNUCLEOTIDYL TRANSFER AND ZINC-BINDING [J].
BUSHMAN, FD ;
ENGELMAN, A ;
PALMER, I ;
WINGFIELD, P ;
CRAIGIE, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (08) :3428-3432
[6]   REVERSAL OF INTEGRATION AND DNA SPLICING MEDIATED BY INTEGRASE OF HUMAN-IMMUNODEFICIENCY-VIRUS [J].
CHOW, SA ;
VINCENT, KA ;
ELLISON, V ;
BROWN, PO .
SCIENCE, 1992, 255 (5045) :723-726
[7]   THE IN PROTEIN OF MOLONEY MURINE LEUKEMIA-VIRUS PROCESSES THE VIRAL-DNA ENDS AND ACCOMPLISHES THEIR INTEGRATION INVITRO [J].
CRAIGIE, R ;
FUJIWARA, T ;
BUSHMAN, F .
CELL, 1990, 62 (04) :829-837
[8]   IDENTIFICATION OF AMINO-ACID-RESIDUES CRITICAL FOR ENDONUCLEASE AND INTEGRATION ACTIVITIES OF HIV-1 IN PROTEIN INVITRO [J].
DRELICH, M ;
WILHELM, R ;
MOUS, J .
VIROLOGY, 1992, 188 (02) :459-468
[9]   IDENTIFICATION OF DISCRETE FUNCTIONAL DOMAINS OF HIV-1 INTEGRASE AND THEIR ORGANIZATION WITHIN AN ACTIVE MULTIMERIC COMPLEX [J].
ENGELMAN, A ;
BUSHMAN, FD ;
CRAIGIE, R .
EMBO JOURNAL, 1993, 12 (08) :3269-3275
[10]   IDENTIFICATION OF CONSERVED AMINO-ACID-RESIDUES CRITICAL FOR HUMAN-IMMUNODEFICIENCY-VIRUS TYPE-1 INTEGRASE FUNCTION-INVITRO [J].
ENGELMAN, A ;
CRAIGIE, R .
JOURNAL OF VIROLOGY, 1992, 66 (11) :6361-6369