THE COMPLEXITY OF PLANAR COMPLIANT MOTION PLANNING UNDER UNCERTAINTY

被引:22
作者
DONALD, BR [1 ]
机构
[1] MIT,ARTIFICIAL INTELLIGENCE LAB,CAMBRIDGE,MA 02139
关键词
D O I
10.1007/BF01840394
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We consider the computational complexity of planning compliant motions in the plane, given geometric bounds on the uncertainty in sensing and control. We can give efficient algorithms for generating and verifying compliant motion strategies that are guaranteed to succeed as long as the sensing and control uncertainties lie within the specified bounds. We also consider the case where a compliant motion plan is required to succeed over some parametric family of geometries. While these problems are known to be intractable in three dimensions, we identify tractable subclasses in the plane. © 1990 Springer-Verlag New York Inc.
引用
收藏
页码:353 / 382
页数:30
相关论文
共 44 条
[1]   Visibility of Disjoint Polygons [J].
Asano, Takao ;
Asano, Tetsuo ;
Guibas, Leonidas ;
Hershberger, John ;
Imai, Hiroshi .
ALGORITHMICA, 1986, 1 (1-4) :49-63
[2]  
BAJAJ C, 1987, P ACM S COMPUTATIONA
[3]  
Brady M, 1982, ROBOT MOTION PLANNIN
[4]  
BROOKS R, 1983, 8TH P INT JOINT C AR
[5]  
BROST R, 1986, APR P IEEE INT C ROB
[6]  
BUCKLEY SJ, 1987, MITAITR936
[7]  
BUCKLEY SJ, 1987, THESIS MIT
[8]  
BURRIDGE R, 1987, MAR P IEEE INT C ROB
[9]   SIMPLIFIED VORONOI DIAGRAMS [J].
CANNY, J ;
DONALD, B .
DISCRETE & COMPUTATIONAL GEOMETRY, 1988, 3 (03) :219-236
[10]  
Canny J., 1986, IEEE T PATTERN ANAL, V8