ORDINAL DATA - ALTERNATIVE DISTRIBUTION

被引:13
作者
SCHULMAN, RS
机构
[1] Department of Statistics, Virginia Polytechnic Institute and State University, Blacksburg, 24061, Virginia
关键词
ordinal data; ordinal test; permutation distribution; rank correlation; reliability; true score;
D O I
10.1007/BF02293781
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
To date, virtually all techniques appropriate for ordinal data are based on the uniform probability distribution over the permutations. In this paper we introduce and examine an alternative probability model for the distribution of ordinal data. Preliminary to deriving the expectations of Spearman's rho and Kendall's tau under this model, we show how to compute certain conditional expectations of rho and tau under the uniform distribution. The alternative probability model is then applied to ordinal test theory, and the calculation of true scores and test reliability are discussed. © 1979 The Psychometric Society.
引用
收藏
页码:3 / 20
页数:18
相关论文
共 17 条
[1]  
DURBIN J, 1951, J ROY STAT SOC B, V13, P303
[2]   ON SAMPLING FROM A POPULATION OF RANKERS [J].
EHRENBERG, ASC .
BIOMETRIKA, 1952, 39 (1-2) :82-87
[3]  
Kendall M., 1950, J R STAT SOC B, V12, P189
[4]  
Kendall M.G., 1970, RANK CORRELATION MET, V4th ed.
[5]  
Kendall MG, 1938, BIOMETRIKA, V30, P81, DOI 10.1093/biomet/30.1-2.81
[6]   Partial rank correlation [J].
Kendall, MG .
BIOMETRIKA, 1942, 32 :277-283
[7]   The problem of m rankings [J].
Kendall, MG ;
Smith, BB .
ANNALS OF MATHEMATICAL STATISTICS, 1939, 10 :275-287
[8]   APPROXIMATE TESTS FOR M-RANKINGS [J].
LINHART, H .
BIOMETRIKA, 1960, 47 (3-4) :476-480
[9]  
Lyerly SB, 1952, PSYCHOMETRIKA, V17, P421