SOME FORMAL PROPERTIES OF OPERATOR POLAR DECOMPOSITION

被引:11
作者
STENHOLM, S [1 ]
机构
[1] UNIV HELSINKI,ACAD FINLAND,SF-00014 HELSINKI,FINLAND
来源
PHYSICA SCRIPTA | 1993年 / T48卷
关键词
D O I
10.1088/0031-8949/1993/T48/011
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper I consider the general mathematical problem of the polar decomposition of an operator in a linear space. Extending the space makes it possible to define a unitary operator related to the original nonhermitean one. By Stone's theorem this guarantees the existence of a phase operator in the extended space. The connection with supersymmetry is pointed out. Applying the general results to harmonic oscillator creation and annihilation operators we regain a phase description originally introduced by Newton. Projecting the phase operator from the extended space to the original one, we find a phase representation for the Boson operators. Introducing the conjugate rotation operator, one can describe the oscillator dynamics in the phase representation. The connection with the Barnett-Pegg phase operator is pointed out.
引用
收藏
页码:77 / 83
页数:7
相关论文
共 28 条
[1]  
Barnett S. M., 1986, Frontiers in Quantum Optics, P485
[2]   ON THE HERMITIAN OPTICAL-PHASE OPERATOR [J].
BARNETT, SM ;
PEGG, DT .
JOURNAL OF MODERN OPTICS, 1989, 36 (01) :7-19
[3]   QUANTUM-THEORY OF OPTICAL-PHASE CORRELATIONS [J].
BARNETT, SM ;
PEGG, DT .
PHYSICAL REVIEW A, 1990, 42 (11) :6713-6720
[4]   OPERATORS OF THE PHASE - FUNDAMENTALS [J].
BERGOU, J ;
ENGLERT, BG .
ANNALS OF PHYSICS, 1991, 209 (02) :479-505
[5]   QUANTUM ELECTRODYNAMICS OF INTENSE PHOTON BEAMS [J].
BIALYNIC.I ;
BIALYNIC.Z .
PHYSICAL REVIEW A, 1973, 8 (06) :3146-3153
[6]  
BIALYNICKIBIRULA I, 1976, PHYS REV A, V14, P1101, DOI 10.1103/PhysRevA.14.1101
[7]   PHASE AND ANGLE VARIABLES IN QUANTUM MECHANICS [J].
CARRUTHERS, P ;
NIETO, MM .
REVIEWS OF MODERN PHYSICS, 1968, 40 (02) :411-+
[8]  
CIBELS MB, 1991, PHYS REV A, V43, P4044
[9]  
DeWitt B., 1984, SUPERMANIFOLDS