SUBEXPONENTIALITY AND INFINITE DIVISIBILITY

被引:227
作者
EMBRECHTS, P
GOLDIE, CM
VERAVERBEKE, N
机构
[1] UNIV SUSSEX, BRIGHTON BN1 9QH, E SUSSEX, ENGLAND
[2] LIMBURGS UNIV CENTRUM, DEPT WISKUNDE, B-3610 DIEPENBEEK, BELGIUM
来源
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE | 1979年 / 49卷 / 03期
关键词
D O I
10.1007/BF00535504
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let ℒ denote the class of subexponential distribution functions. For F infinitely divisible on [0, ∞) with Lévy measure v, the following assertions are proved to be equivalent: (i) F∈ℒ, (ii) v(1, x]/v(1,∞)∈ℒ, (iii) 1-F(x)∼v(x, ∞) as x→∞. In the proof of this theorem, some new results on ∞ are established. © 1979 Springer-Verlag.
引用
收藏
页码:335 / 347
页数:13
相关论文
共 17 条
[1]  
[Anonymous], THEORY PROBAB APPL
[2]  
Athreya K. B., 2012, BRANCHING PROCESSES, DOI DOI 10.1007/978-3-642-65371-1
[3]  
BONDESSON L, UNPUBLISHED
[4]   LEMMA ON REGULAR VARIATION OF A TRANSIENT RENEWAL FUNCTION [J].
CALLAERT, H ;
COHEN, JW .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1972, 24 (04) :275-278
[5]  
Chistyakov V.P., 1964, THEORY PROBAB APPL, V9, P640, DOI DOI 10.1137/1109088
[6]   DEGENERACY PROPERTIES OF SUBCRITICAL BRANCHING PROCESSES [J].
CHOVER, J ;
NEY, P ;
WAINGER, S .
ANNALS OF PROBABILITY, 1973, 1 (04) :663-673
[7]   FUNCTIONS OF PROBABILITY MEASURES [J].
CHOVER, J ;
NEY, P ;
WAINGER, S .
JOURNAL D ANALYSE MATHEMATIQUE, 1973, 26 :255-302
[8]   SOME RESULTS ON REGULAR VARIATION FOR DISTRIBUTIONS IN QUEUING AND FLUCTUATION THEORY [J].
COHEN, JW .
JOURNAL OF APPLIED PROBABILITY, 1973, 10 (02) :343-353
[9]  
Feller W., 1969, ENSEIGN MATH, V15, P107
[10]  
Feller W., 1971, An Introduction to Probability Theory and Its Applications, V2