BEZIER NETS, CONVEXITY AND SUBDIVISION ON HIGHER-DIMENSIONAL SIMPLICES

被引:6
作者
GOODMAN, TNT
PETERS, J
机构
[1] PURDUE UNIV,DEPT COMP SCI,W LAFAYETTE,IN 47907
[2] UNIV DUNDEE,DEPT MATH & COMP SCI,DUNDEE DD1 4HN,SCOTLAND
基金
美国国家科学基金会;
关键词
BEZIER NETS; CONVEXITY; SUBDIVISION; HIGHER-DIMENSIONAL SIMPLICES;
D O I
10.1016/0167-8396(93)E0057-K
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Explicit necessary and sufficient conditions for the convexity of a multivariate Bezier net are given. These are used to show that the Bernstein polynomial of a function on a simplex preserves a strong form of convexity, that takes the generating directions of the simplex into account. Moreover, an efficient algorithm is presented for computing the Bezier points on a regular subdivision of a simplex in higher dimensions. This subdivision process preserves the convexity of the Bezier net.
引用
收藏
页码:53 / 65
页数:13
相关论文
共 13 条
[1]   THE CONVEXITY OF BERNSTEIN POLYNOMIALS OVER TRIANGLES [J].
CHANG, GZ ;
DAVIS, PJ .
JOURNAL OF APPROXIMATION THEORY, 1984, 40 (01) :11-28
[2]  
Dahmen W., 1988, STUD SCI MATH HUNG, V23, P265
[3]  
de Boor C., 1987, GEOMETRIC MODELING
[4]  
Goodman T. N. T., 1991, Computer-Aided Geometric Design, V8, P175, DOI 10.1016/0167-8396(91)90043-B
[5]  
Goodman T.N.T., 1991, MATH BALKANICA, V5, P129
[6]   VARIATION DIMINISHING PROPERTIES OF BERNSTEIN POLYNOMIALS ON TRIANGLES [J].
GOODMAN, TNT .
JOURNAL OF APPROXIMATION THEORY, 1987, 50 (02) :111-126
[7]  
GOODMAN TNT, 1989, MATH METHODS CAGD, P249
[8]  
Grandine T. A., 1989, Computer-Aided Geometric Design, V6, P181, DOI 10.1016/0167-8396(89)90022-8
[9]  
LORENTZ GG, 1953, MATH EXPOSITIONS
[10]  
PETERS J, 1994, EVALUATION APPROXIMA