MINIMAL GRAPHS

被引:10
作者
EELLS, J
机构
[1] Mathematics Institute, University of Warwick, Coventry
关键词
D O I
10.1007/BF01647968
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Elementary properties of harmonic maps between Riemannian manifolds are interpreted via their graphs, viewed as nonparametric minimal submanifolds (Proposition 1). Then examples, are given of nonparametric submanifolds of compact Riemannian manifolds which cannot be deformed-through nonparametric submanifolds-to nonparametric minimal submanifolds (Propositions 2 and 4). © 1979 Springer-Verlag.
引用
收藏
页码:101 / 108
页数:8
相关论文
共 10 条
[1]   HARMONIC MAPPINGS OF RIEMANNIAN MANIFOLDS [J].
EELLS, J ;
SAMPSON, JH .
AMERICAN JOURNAL OF MATHEMATICS, 1964, 86 (01) :109-&
[2]   RESTRICTIONS ON HARMONIC MAPS OF SURFACES [J].
EELLS, J ;
WOOD, JC .
TOPOLOGY, 1976, 15 (03) :263-266
[3]  
Eells J., 1978, B LOND MATH SOC, V10, P1, DOI [10.1112/blms/10.1.1, DOI 10.1112/BLMS/10.1.1]
[4]  
EELLS J, UNPUBLISHED
[5]   COMPLETE MINIMAL SURFACES IN S3 [J].
LAWSON, HB .
ANNALS OF MATHEMATICS, 1970, 92 (02) :335-&
[6]   NONEXISTENCE, NON-UNIQUENESS AND IRREGULARITY OF SOLUTIONS TO MINIMAL SURFACE SYSTEM [J].
LAWSON, HB ;
OSSERMAN, R .
ACTA MATHEMATICA, 1977, 139 (1-2) :1-17
[7]  
LEMAIRE L, 1977, THESIS U WARWICK
[8]   MINIMAL VARIETIES [J].
OSSERMAN, R .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 75 (06) :1092-&
[9]  
OSSERMAN R, 1969, VANNOSTRAND MATH STU, V25
[10]  
Osserman R., 1970, P S PURE MATH, VXV, P283