STABILITY AND LINEAR INDEPENDENCE ASSOCIATED WITH WAVELET DECOMPOSITIONS

被引:72
作者
JIA, RQ
WANG, JZ
机构
关键词
WAVELETS; WAVELET DECOMPOSITIONS; REFINEMENT EQUATIONS; STABILITY; LINEAR INDEPENDENCE; ORTHOGONALITY;
D O I
10.2307/2159543
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Wavelet decompositions are based on basis functions satisfying refinement equations. The stability, linear independence, and orthogonality of the integer translates of basis functions play an essential role in the study of wavelets. In this paper we characterize these properties in terms of the mask sequence in the refinement equation that the basis function satisfies.
引用
收藏
页码:1115 / 1124
页数:10
相关论文
共 16 条
[1]  
CAVARETTA AS, 1991, MEM AM MATH SOC, V93
[2]  
CHUI CK, 1990, CAT219 TEX AM U REP
[3]   WAVELETS, MULTISCALE ANALYSIS AND QUADRATURE MIRROR FILTERS [J].
COHEN, A .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1990, 7 (05) :439-459
[4]  
COHEN A, 1990, THESIS U PARIS 9 FRA
[5]  
DAHMEN W, 1983, LINEAR ALGEBRA APPL, V52-3, P217
[6]  
DAHMEN W, 1990, MULTIVARIATE APPROXI, P69
[7]   ORTHONORMAL BASES OF COMPACTLY SUPPORTED WAVELETS [J].
DAUBECHIES, I .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (07) :909-996
[8]  
DAUBECHIES I, 1991, CURVES SURFACES, P209
[9]  
DAUBECHIES I, 1992, CMBS NSF C PHIL
[10]  
JIA RQ, IN PRESS P EDINBURGH