A COMPARISON OF ADAPTIVE REFINEMENT TECHNIQUES FOR ELLIPTIC PROBLEMS

被引:140
作者
MITCHELL, WF [1 ]
机构
[1] UNIV ILLINOIS,URBANA,IL 61801
来源
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE | 1989年 / 15卷 / 04期
关键词
D O I
10.1145/76909.76912
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
引用
收藏
页码:326 / 347
页数:22
相关论文
共 17 条
[1]   ERROR ESTIMATES FOR ADAPTIVE FINITE-ELEMENT COMPUTATIONS [J].
BABUSKA, I ;
RHEINBOLDT, WC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (04) :736-754
[2]   ANGLE CONDITION IN FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
AZIZ, AK .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1976, 13 (02) :214-226
[3]  
BANK RE, 1985, MATH COMPUT, V44, P283, DOI 10.1090/S0025-5718-1985-0777265-X
[4]   AN ADAPTIVE, MULTILEVEL METHOD FOR ELLIPTIC BOUNDARY-VALUE-PROBLEMS [J].
BANK, RE ;
SHERMAN, AH .
COMPUTING, 1981, 26 (02) :91-105
[5]  
BANK RE, 1985, PLTMG USERS GUIDE
[6]  
DE JP, 1983, INT J NUMER METH ENG, V19, P1621
[7]   CONDITION OF FINITE ELEMENT MATRICES GENERATED FROM NONUNIFORM MESHES [J].
FRIED, I .
AIAA JOURNAL, 1972, 10 (02) :219-&
[8]   A-POSTERIORI ERROR ANALYSIS AND ADAPTIVE PROCESSES IN THE FINITE-ELEMENT METHOD .1. ERROR ANALYSIS [J].
KELLY, DW ;
GAGO, JPDR ;
ZIENKIEWICZ, OC ;
BABUSKA, I .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1983, 19 (11) :1593-1619
[9]  
MITCHELL WF, 1987, UIUCDCSR871375 U ILL
[10]   A POPULATION OF LINEAR, 2ND ORDER, ELLIPTIC PARTIAL-DIFFERENTIAL EQUATIONS ON RECTANGULAR DOMAINS .1. [J].
RICE, JR ;
HOUSTIS, EN ;
DYKSEN, WR .
MATHEMATICS OF COMPUTATION, 1981, 36 (154) :475-484