THE COMPLEX-SCALING FOURIER-GRID HAMILTONIAN METHOD FOR RESONANCE STATE PROBLEMS

被引:46
作者
CHU, SI
机构
[1] Department of Chemistry, University of Kansas, Lawrence
关键词
D O I
10.1016/0009-2614(90)85087-S
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present a new complex scaling method for the study of resonance eigenstates without the use of basis set expansions. The procedure does not require the computation of potential matrix elements; the eigenvectors provide directly the values of the resonance wave functions at the space grid points. The simplicity, efficiency, and reliability of the method is illustrated by a case study of the tunneling in an anharmonic oscillator. © 1990.
引用
收藏
页码:155 / 157
页数:3
相关论文
共 9 条
[1]  
AGUILAR J, 1971, COMMUN MATH PHYS, V22, P265
[2]   ON THE RESONANCE-SPECTRUM OF THE ONE-DIMENSIONAL SCHRODINGER-EQUATION [J].
ATABEK, O ;
LEFEBVRE, R .
CHEMICAL PHYSICS LETTERS, 1981, 84 (02) :233-235
[3]   SPECTRAL PROPERTIES OF MANY-BODY SCHRODINGER OPERATORS WITH DILATATION-ANALYTIC INTERACTIONS [J].
BALSLEV, E ;
COMBES, JM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1971, 22 (04) :280-&
[4]  
CHU SI, 1986, INT J QUANTUM CHEM S, V20, P129
[5]   COMPLEX SCALING METHOD FOR NUMERICAL POTENTIALS [J].
DATTA, KK ;
CHU, SI .
CHEMICAL PHYSICS LETTERS, 1982, 87 (04) :357-364
[6]   THE FOURIER GRID HAMILTONIAN METHOD FOR BOUND-STATE EIGENVALUES AND EIGENFUNCTIONS [J].
MARSTON, CC ;
BALINTKURTI, GG .
JOURNAL OF CHEMICAL PHYSICS, 1989, 91 (06) :3571-3576
[8]   RESONANCE CALCULATIONS FOR ARBITRARY POTENTIALS [J].
YARIS, R ;
BENDLER, J ;
LOVETT, RA ;
BENDER, CM ;
FEDDERS, PA .
PHYSICAL REVIEW A, 1978, 18 (05) :1816-1825
[9]  
1978, INT J QUANTUM CHEM, V14, P343