RELAXATION OSCILLATIONS OF A VAN DER POL EQUATION WITH LARGE CRITICAL FORCING TERM

被引:10
作者
GRASMAN, J
机构
关键词
D O I
10.1090/qam/575829
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A van der Pol equation with sinusoidal forcing term is analyzed with singular perturbation methods for large values of the parameter. Asymptotic approximations of (sub)harmonic solutions with period T equals 2 pi (2n minus 1), n equals 1,2,. . . are constructed under certain restricting conditions for the amplitude of the forcing term. These conditions are such that always two solutions with period T equals 2 pi (2n plus or minus 1) coexist.
引用
收藏
页码:9 / 16
页数:8
相关论文
共 11 条
[1]  
Bavinck H., 1974, International Journal of Non-Linear Mechanics, V9, P421, DOI 10.1016/0020-7462(74)90008-0
[2]  
FLAHERTY JE, 1978, STUD APPL MATH, V18, P5
[3]   RELAXATION OSCILLATIONS GOVERNED BY A VANDERPOL EQUATION WITH PERIODIC FORCING TERM [J].
GRASMAN, J ;
VELING, EJM ;
WILLEMS, GM .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1976, 31 (04) :667-676
[4]  
GRASMAN J, 1978, N HOLLAND MATH STUDI, V31, P93
[5]  
GUCKENHEIMER J, SYMBOLIC DYNAMICS RE
[6]  
LEVI M, 1978, THESIS NEW YORK U NE
[7]   A 2ND ORDER DIFFERENTIAL EQUATION WITH SINGULAR SOLUTIONS [J].
LEVINSON, N .
ANNALS OF MATHEMATICS, 1949, 50 (01) :127-153
[9]  
LITTLEWOOD JE, 1963, VANDERPOLS EQUATION, P161
[10]  
LLOYD NG, 1972, PROC CAMB PHILOS S-M, V72, P213