THE HULL OF HOLOMORPHY OF A NONISOTROPIC BALL IN A REAL HYPERSURFACE OF FINITE-TYPE

被引:11
作者
BOGGESS, A
DWILEWICZ, R
NAGEL, A
机构
[1] INST MATH,PL-0091 WARSAW,POLAND
[2] UNIV WISCONSIN,DEPT MATH,MADISON,WI 53706
关键词
D O I
10.2307/2001624
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the hull of holomorphy of a nonisotropic ball in a real hypersurface of finite type in C(n) contains an open set in C(n) which emanates from the hypersurface a distance which is proportional to the length of the minor axis of the nonisotropic ball. In addition, we prove a maximal function estimate for plurisubharmonic functions which is important in the study of boundary values of holomorphic functions.
引用
收藏
页码:209 / 232
页数:24
相关论文
共 12 条
[1]   A PROPERTY OF THE FUNCTIONS AND DISTRIBUTIONS ANNIHILATED BY A LOCALLY INTEGRABLE SYSTEM OF COMPLEX VECTOR-FIELDS [J].
BAOUENDI, MS ;
TREVES, F .
ANNALS OF MATHEMATICS, 1981, 113 (02) :387-421
[2]   DIFFERENTIABLE MANIFOLDS IN COMPLEX EUCLIDEAN SPACE [J].
BISHOP, E .
DUKE MATHEMATICAL JOURNAL, 1965, 32 (01) :1-&
[3]  
Bloom T., 1977, J DIFFER GEOM, V12, P171
[4]  
BOGESS A, 1985, DUKE MATH J, V52, P67
[5]  
BOGGESS A, 1987, MICH MATH J, V34, P105
[6]  
GLOBEVNIK J, CHARACTERIZATION HAR
[7]  
HILL CD, 1978, ANN SCUOLA NORM SUP, V4, P327
[8]  
Kohn J.J., 1972, J DIFFER GEOM, V6, P523
[10]   BALLS AND METRICS DEFINED BY VECTOR-FIELDS .1. BASIC PROPERTIES [J].
NAGEL, A ;
STEIN, EM ;
WAINGER, S .
ACTA MATHEMATICA, 1985, 155 (1-2) :103-147