ANALYTICITY FOR THE KURAMOTO-SIVASHINSKY EQUATION

被引:65
作者
COLLET, P
ECKMANN, JP
EPSTEIN, H
STUBBE, J
机构
[1] UNIV GENEVA,DEPT PHYS THEOR,CH-1211 GENEVA 4,SWITZERLAND
[2] UNIV GENEVA,MATH SECT,CH-1211 GENEVA 4,SWITZERLAND
[3] IHES,BURES SUR YVETTE,FRANCE
[4] CERN,CH-1211 GENEVA 23,SWITZERLAND
来源
PHYSICA D | 1993年 / 67卷 / 04期
关键词
D O I
10.1016/0167-2789(93)90168-Z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the analyticity properties of solutions of the Kuramoto-Sivashinsky equation partial derivative(t)U(x,t) = -(partial derivative(x)2 + partial derivative(x)4) U(x, t) - U(x, t) partial derivative(x)U(x, t), for initial data which are period which show that the solutions of the KS-equation are analytic in a strip around the real axis whose width is independent of L. A rigorous lower bound 0 (L-16/25) is given for this width.
引用
收藏
页码:321 / 326
页数:6
相关论文
共 10 条
[1]   A GLOBAL ATTRACTING SET FOR THE KURAMOTO-SIVASHINSKY EQUATION [J].
COLLET, P ;
ECKMANN, JP ;
EPSTEIN, H ;
STUBBE, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 152 (01) :203-214
[2]   GEVREY CLASS REGULARITY FOR THE SOLUTIONS OF THE NAVIER-STOKES EQUATIONS [J].
FOIAS, C ;
TEMAM, R .
JOURNAL OF FUNCTIONAL ANALYSIS, 1989, 87 (02) :359-369
[3]  
GOODMAN J, IN PRESS COMMUN PURE
[4]  
Hairer E., 1991, SOLVING ORDINARY DIF, DOI [10.1007/978-3-662-09947-6, DOI 10.1007/978-3-662-09947-6]
[5]   PROOF OF SCALE INVARIANT SOLUTIONS IN THE KARDAR-PARISI-ZHANG AND KURAMOTO-SIVASHINSKY EQUATIONS IN 1+1 DIMENSIONS - ANALYTICAL AND NUMERICAL RESULTS [J].
LVOV, VS ;
LEBEDEV, VV ;
PATON, M ;
PROCACCIA, I .
NONLINEARITY, 1993, 6 (01) :25-47
[6]  
MANNEVILLE P, 1985, LECTURE NOTES PHYSIC, V230
[7]  
MANNEVILLE P, 1991, STRUCTURES DISSIPATI
[8]   SOME GLOBAL DYNAMICAL PROPERTIES OF THE KURAMOTO-SIVASHINSKY EQUATIONS - NONLINEAR STABILITY AND ATTRACTORS [J].
NICOLAENKO, B ;
SCHEURER, B ;
TEMAM, R .
PHYSICA D, 1985, 16 (02) :155-183
[9]   SURFACE ROUGHENING AND THE LONG-WAVELENGTH PROPERTIES OF THE KURAMOTO-SIVASHINSKY EQUATION [J].
PROCACCIA, I ;
JENSEN, MH ;
LVOV, VS ;
SNEPPEN, K ;
ZEITAK, R .
PHYSICAL REVIEW A, 1992, 46 (06) :3220-3224
[10]  
YU S, 1992, J DYN DIFFER EQUATIO, P585