QUASI-NEWTON METHOD FOR MINIMIZATION UNDER LINEAR CONSTRAINTS WITHOUT EVALUATING ANY DERIVATIVES

被引:1
作者
BRAUNINGER, J
机构
[1] Mathematisches Institut A, Universität Stuttgart, Stuttgart 80, D-7000
关键词
D O I
10.1007/BF02253133
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper a method is described for solving linearly constrained nonlinear programming problems without evaluating any derivatives of the objective function. The algorithm uses the concept of active constraints and avoids the calculation of derivatives by approximating modified gradients and Hessian matrices by the aid of differences of function values. These approximations are calculated in such a way that the same convergence results are obtained as for any Quasi-Newton method. © 1979 Springer-Verlag.
引用
收藏
页码:127 / 141
页数:15
相关论文
共 9 条
[1]  
BRAUNINGER J, 1977, THESIS U STUTTGART
[2]  
BRAUNINGER J, 1977, METHODS OPERATIONS R, V23, P17
[3]  
DIEUDONNE J, 1960, F MODERN ANAL
[4]  
FISCHER J, 1976, OPTIMIZATION OPERATI
[5]   AN EFFECTIVE ALGORITHM FOR MINIMIZATION [J].
GOLDSTEIN, AA ;
PRICE, JF .
NUMERISCHE MATHEMATIK, 1967, 10 (03) :184-+
[6]  
Himmelblau DM., 2018, APPL NONLINEAR PROGR
[7]  
MAY JH, 1976, 162 U PITTSB GRAD SC
[8]  
MAY JH, 1976, 153 U PITTSB GRAD SC
[9]  
Ritter K., 1973, MATHEMATICAL PROGRAM, V4, P44, DOI 10.1007/BF01584646