ON A NUMERICAL APPROACH TO STEFAN-LIKE PROBLEMS

被引:28
作者
AMIEZ, G
GREMAUD, PA
机构
[1] Département de Mathématiques, Ecole Polytechnique Fédérale de Lausanne, Ecublens
关键词
Subject classifications: AMS(MOS): 65M10; 65N05; CR:; G1.8;
D O I
10.1007/BF01385771
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the numerical analysis of a bidimensional two-phase Stefan problem. We approximate the enthalpy formulation by C0 piecewise linear finite elements in space combined with a semi-implicit scheme in time. Under some restrictions related to the finite element mesh and to the time-step, we prove positivity, stability and convergence results. Various numerical tests are presented and discussed in order to show the accuracy of our scheme.
引用
收藏
页码:71 / 89
页数:19
相关论文
共 15 条
[1]  
BERGER AE, 1979, ANAL NUMERIQUE, V4, P297
[2]  
Brezis H., 1983, ANAL FONCTIONNELLE T
[3]  
Ciarlet P. G., 2002, FINITE ELEMENT METHO
[4]   NUMERICAL-ANALYSIS OF 2-PHASE STEFAN PROBLEM BY METHOD OF FINITE-ELEMENTS [J].
CIAVALDINI, JF .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1975, 12 (03) :464-487
[5]  
DAHLUIJSEN AJ, 1986, INT J NUMERICAL METH, V23, P1807
[6]   SIMULATION OF SOLIDIFICATION OF ALLOYS BY THE FINITE-ELEMENT METHOD [J].
DESBIOLLES, JL ;
DROUX, JJ ;
RAPPAZ, J ;
RAPPAZ, M .
COMPUTER PHYSICS REPORTS, 1987, 6 (1-6) :371-383
[7]  
LADYZHENSKAYA OA, 1968, TRANSL MATH MONOGRAP
[8]  
LIONS JL, 1969, QUELQUES METHODES RE
[9]  
MAGENES E, 1987, MODEL MATH ANAL NUM, V4, P655
[10]  
NIE YY, 1984, 22 CHALM U TECHN U G