Alpha-Thrombin (thrombin), a potent mitogen for CCL39 hamster lung fibroblasts, stimulates phosphoinositide-specific phospholipase C (PI-PLC) and inhibits adenylate cyclase via cleavage of a specific G-protein-coupled receptor (TH-R), recently cloned from human and hamster cells. This action can be entirely mimicked by the synthetic peptide SFFLRNP, referred to here as TMP (thrombin-mimicking peptide). TMP corresponds to the first seven amino acids of the new N-terminus generated by thrombin cleavage of the hamster THR. Although thrombin and TMP apparently generate identical early transmembrane signals, only thrombin is mitogenic on its own. TMP needs to be associated with fibroblast growth factor (FGF), a tyrosine kinase-activating growth factor, to induce cell-cycle re-entry. Here, we have examined the early and late phase of p44 MAP kinase (p44mapk) activation in G0-arrested CCL39 cells after stimulation by thrombin, TMP, FGF or TMP+FGF. We found that: (i) both thrombin and TMP rapidly activate p44mapk in a dose-dependent manner with maximum activation at around 5 min, (ii) after the initial burst of activation, a second and long-lasting wave of activation is observed in response to thrombin (10-100 nM) but not to TMP (up to 300 muM), (iii) FGF alone (25 ng/ml), like thrombin, rapidly and persistently activates p44mapk (20-fold at 5 min and about 3-fold after 2 h), (iv) TMP added together with FGF strongly potentiates the second and sustained phase of p44mapk activation. From these results we propose that: (1) thrombin-induced mitogenesis is mediated only in part by the TH-R recently cloned and (2) activation of p44mapk, in particular the long-lasting phase that correlates with DNA synthesis, is an obligatory event for cell-cycle re-entry.