ON B2K-SEQUENCES

被引:5
作者
JIA, XD [1 ]
机构
[1] SW TEXAS STATE UNIV,DEPT MATH,SAN MARCOS,TX 78666
关键词
D O I
10.1006/jnth.1994.1061
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A set A of nonnegative integers is called a B(h)-sequence if all sums x1 + ... + x(h) with x(i) is-an-element-of A and x1 less-than-or-equal-to ... less-than-or-equal-to x(h) are distinct. Some results concerning the growth of the counting function of B2k-sequences are proved in the paper, including the following result: For any B2k-sequence A, lim inf(n --> infinity) A(n)2k square-root (log n)/n < infinity, provided A(n2) much less than A(n)2 for all n sufficiently large, where A(n) is the number of positive elements less-than-or-equal-to n in A. (C) 1994 Academic Press, Inc.
引用
收藏
页码:183 / 196
页数:14
相关论文
共 5 条
[1]  
HALBERSTAM H., 1983, SEQUENCES
[2]  
KRUKEBERG F, 1961, J REINE ANGEW MATH, V206, P53
[3]   ON B4-SEQUENCES [J].
NASH, JCM .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1989, 32 (04) :446-449
[5]  
Stohr A., 1955, J REINE ANGEW MATH, V1955, P111