RANDOM PROJECTIONS OF REGULAR SIMPLICES

被引:58
作者
AFFENTRANGER, F
SCHNEIDER, R
机构
[1] Mathematisches Institut, Albert-Ludwigs-Universität, Freiburg i. Br., W-7800
关键词
D O I
10.1007/BF02187839
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Precise asymptotic formulae are obtained for the expected number of k-faces of the orthogonal projection of a regular n-simplex in n-space onto a randomly chosen isotropic subspace of fixed dimension or codimension, as the dimension n tends to infinity.
引用
收藏
页码:219 / 226
页数:8
相关论文
共 15 条
[1]  
AFFENTRANGER F, UNPUB CONVEX HULL RA
[2]  
Bohm J., 1980, POLYEDERGEOMETRIE N
[3]   GRASSMANN ANGLES OF CONVEX POLYTOPES [J].
GRUNBAUM, B .
ACTA MATHEMATICA UPPSALA, 1968, 121 (3-4) :293-&
[4]  
Grunbaum B., 2003, CONVEX POLYTOPES, V2nd
[5]   LATTICE POINT NUMBER IN SIMPLICES AND WILL CONJECTURE [J].
HADWIGER, H .
MATHEMATISCHE ANNALEN, 1979, 239 (03) :271-288
[6]   NONLINEAR ANGLE-SUM RELATIONS FOR POLYHEDRAL CONES AND POLYTOPES [J].
MCMULLEN, P .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1975, 78 (SEP) :247-261
[7]  
MCMULLEN P, 1971, CONVEX POLYTOPES UPP, V3
[8]  
Miles R. E., 1969, ADV APPL PROBAB, V1, P211
[9]   COMPLEX CLOUD ENVELOPE OF UNCERTAIN POINTS IN R(N) .1. [J].
RAYNAUD, H .
JOURNAL OF APPLIED PROBABILITY, 1970, 7 (01) :35-&