A DIRECT APPROACH TO STUDYING SOLITON PERTURBATIONS

被引:97
作者
HERMAN, RL
机构
[1] Dept. of Math., St. Lawrence Univ., Canton, NY
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1990年 / 23卷 / 12期
关键词
D O I
10.1088/0305-4470/23/12/017
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Starting with an integrable nonlinear evolution equation, the author investigates perturbations about a one-soliton solution, through the inversion of a linear equation for the first-order correction to the soliton solution. This inversion differs from past methods, as the proposed method takes place in coordinate space, not spectral space, while it employs some of the tools of inverse scattering theory. The method is applied to the Korteweg-de Vries, nonlinear Schrodinger and sine-Gordon equations. The first-order corrections are then obtained.
引用
收藏
页码:2327 / 2362
页数:36
相关论文
共 44 条
[1]  
Ablowitz M. J., 1981, SOLITONS INVERSE SCA
[2]  
ABLOWITZ MJ, 1974, STUD APPL MATH, V53, P249
[3]   METHOD FOR SOLVING SINE-GORDON EQUATION [J].
ABLOWITZ, MJ ;
KAUP, DJ ;
NEWELL, AC ;
SEGUR, H .
PHYSICAL REVIEW LETTERS, 1973, 30 (25) :1262-1264
[4]  
Bishop A. R., 1980, Physica D, V1D, P1, DOI 10.1016/0167-2789(80)90003-2
[5]  
Bleistein N., 1986, ASYMPTOTIC EXPANSION
[6]   INTEGRABILITY OF NON-LINEAR HAMILTONIAN-SYSTEMS BY INVERSE SCATTERING METHOD [J].
CHEN, HH ;
LEE, YC ;
LIU, CS .
PHYSICA SCRIPTA, 1979, 20 (3-4) :490-492
[7]  
Dodd R., 1982, SOLITON NONLINEAR WA
[8]  
Dwight H B, 1969, TABLES INTEGRALS OTH
[9]  
FOKAS AS, 1986, STUD APPL MATH, V75, P79
[10]   THE STOCHASTIC, DAMPED KDV EQUATION [J].
HERMAN, RL .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (07) :1063-1084