NONLINEAR DIFFERENTIAL-EQUATIONS AND LIE-SUPERALGEBRAS

被引:10
作者
BECKERS, J [1 ]
GAGNON, L [1 ]
HUSSIN, V [1 ]
WINTERNITZ, P [1 ]
机构
[1] UNIV MONTREAL,CTR RECH MATH,MONTREAL H3C 3J7,QUEBEC,CANADA
关键词
D O I
10.1007/BF00955198
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:113 / 120
页数:8
相关论文
共 25 条
[1]   GROUP THEORETICAL APPROACH TO SUPERPOSITION RULES FOR SYSTEMS OF RICCATI-EQUATIONS [J].
ANDERSON, RL ;
HARNAD, J ;
WINTERNITZ, P .
LETTERS IN MATHEMATICAL PHYSICS, 1981, 5 (02) :143-148
[2]   SYSTEMS OF ORDINARY DIFFERENTIAL-EQUATIONS WITH NON-LINEAR SUPERPOSITION PRINCIPLES [J].
ANDERSON, RL ;
HARNAD, J ;
WINTERNITZ, P .
PHYSICA D, 1982, 4 (02) :164-182
[4]  
ANDERSON RL, 1983, J MATH PHYS, V24, P1062
[5]  
[Anonymous], 1986, Introduction to Supersymmetry and Supergravity
[6]   COMPLEX PARABOLIC SUBGROUPS OF G2 AND NONLINEAR DIFFERENTIAL-EQUATIONS [J].
BECKERS, J ;
HUSSIN, V ;
WINTERNITZ, P .
LETTERS IN MATHEMATICAL PHYSICS, 1986, 11 (01) :81-86
[7]  
BEREZIN FA, 1966, METHOD 2ND QUANTIZAT
[8]   SUPERSYMMETRIC QUANTUM-MECHANICS [J].
DECROMBRUGGHE, M ;
RITTENBERG, V .
ANNALS OF PHYSICS, 1983, 151 (01) :99-126
[9]   DYNAMICAL SUPERSYMMETRY OF THE MAGNETIC MONOPOLE AND THE 1/R2-POTENTIAL [J].
DHOKER, E ;
VINET, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1985, 97 (03) :391-427
[10]   SUPERSYMMETRY OF THE PAULI EQUATION IN THE PRESENCE OF A MAGNETIC MONOPOLE [J].
DHOKER, E ;
VINET, L .
PHYSICS LETTERS B, 1984, 137 (1-2) :72-76