A VELOCITY PRESSURE STREAMLINE DIFFUSION FINITE-ELEMENT METHOD FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

被引:148
作者
HANSBO, P [1 ]
SZEPESSY, A [1 ]
机构
[1] NYU,COURANT INST MATH SCI,NEW YORK,NY 10012
关键词
D O I
10.1016/0045-7825(90)90116-4
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper a streamline diffusion finite element method is introduced for the time-dependent incompressible Navier-Stokes equations in a bounded domain in R2 and R3 in the case of high Reynolds number flow. An error estimate is proved and numerical results are given. The method is based on a mixed velocity-pressure formulation using the same finite element discretization of space-time for the velocity and the pressure spaces, which consist of piecewise linear functions, together with certain least-squares modifications of the Galerkin variational formulation giving added stability without sacrificing accuracy. © 1990.
引用
收藏
页码:175 / 192
页数:18
相关论文
共 26 条
[1]   ERROR ESTIMATES FOR FINITE-ELEMENT METHOD SOLUTION OF THE STOKES PROBLEM IN THE PRIMITIVE VARIABLES [J].
BERCOVIER, M ;
PIRONNEAU, O .
NUMERISCHE MATHEMATIK, 1979, 33 (02) :211-224
[2]   STABILIZED MIXED METHODS FOR THE STOKES PROBLEM [J].
BREZZI, F ;
DOUGLAS, J .
NUMERISCHE MATHEMATIK, 1988, 53 (1-2) :225-235
[3]  
Brezzi F., 1984, NOTES NUMERICAL FLUI, V10, P11, DOI DOI 10.1007/978-3-663-14169-3_2
[4]   STREAMLINE UPWIND PETROV-GALERKIN FORMULATIONS FOR CONVECTION DOMINATED FLOWS WITH PARTICULAR EMPHASIS ON THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS [J].
BROOKS, AN ;
HUGHES, TJR .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1982, 32 (1-3) :199-259
[5]   2 CLASSES OF MIXED FINITE-ELEMENT METHODS [J].
FRANCA, LP ;
HUGHES, TJR .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1988, 69 (01) :89-129
[6]  
Gabay D., 1983, CHAPTER AUGMENTED LA, P299
[7]  
GIRAULT V, 1979, LECTURE NOTES MATH, V749
[8]  
HANSBO P, PUBLICATION U TECHNO, V867
[9]  
HANSBO P, PUBLICATION CHALMERS, V892