ON THE EXISTENCE OF A COMPLETE KAHLER METRIC ON NON-COMPACT COMPLEX-MANIFOLDS AND THE REGULARITY OF FEFFERMANS EQUATION

被引:338
作者
CHENG, SY [1 ]
YAU, ST [1 ]
机构
[1] STANFORD UNIV,STANFORD,CA 94305
关键词
D O I
10.1002/cpa.3160330404
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:507 / 544
页数:38
相关论文
共 9 条
[1]  
BEFORD E, P PARK CITY C GEOMET
[2]   DIFFERENTIAL EQUATIONS ON RIEMANNIAN MANIFOLDS AND THEIR GEOMETRIC APPLICATIONS [J].
CHENG, SY ;
YAU, ST .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1975, 28 (03) :333-354
[3]   MONGE-AMPERE EQUATIONS, BERGMAN KERNEL, AND GEOMETRY OF PSEUDOCONVEX DOMAINS [J].
FEFFERMAN, CL .
ANNALS OF MATHEMATICS, 1976, 103 (02) :395-416
[4]  
KLENBECK P, KAHLER METRICS NEGAT
[5]  
KOEBER H, 1958, P AM MATH SOC, V9, P452
[6]  
Morrey C. B., 1966, MULTIPLE INTEGRALS C, V130
[7]   GENERAL SCHWARZ LEMMA FOR KAHLER MANIFOLDS [J].
YAU, ST .
AMERICAN JOURNAL OF MATHEMATICS, 1978, 100 (01) :197-203
[8]   RICCI CURVATURE OF A COMPACT KAHLER MANIFOLD AND COMPLEX MONGE-AMPERE EQUATION .1. [J].
YAU, ST .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1978, 31 (03) :339-411
[9]   HARMONIC-FUNCTIONS ON COMPLETE RIEMANNIAN MANIFOLDS [J].
YAU, ST .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1975, 28 (02) :201-228