SOLITONS ON LATTICES

被引:96
作者
DUNCAN, DB
EILBECK, JC
FEDDERSEN, H
WATTIS, JAD
机构
[1] Department of Mathematics, Heriot-Watt University, Edinburgh
来源
PHYSICA D | 1993年 / 68卷 / 01期
关键词
D O I
10.1016/0167-2789(93)90020-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We examine a variety of numerical and approximate analytical methods to study families of solitary waves on lattices. Such waves, when they exist, travel through the lattice without loss of energy, and have approximate soliton properties on collision. Corresponding quantum problems are also briefly described.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 33 条
[21]  
HASEGAWA A, 1990, OPTICAL SOLITONS FIB
[22]   AN ITERATIVE METHOD FOR THE CALCULATION OF NARROW SOLITARY EXCITATIONS ON ATOMIC CHAINS [J].
HOCHSTRASSER, D ;
MERTENS, FG ;
BUTTNER, H .
PHYSICA D, 1989, 35 (1-2) :259-266
[23]  
Parmentier R. D., 1978, SOLITONS ACTION, P173
[24]   KINK DYNAMICS IN THE HIGHLY DISCRETE SINE-GORDON SYSTEM [J].
PEYRARD, M ;
KRUSKAL, MD .
PHYSICA D, 1984, 14 (01) :88-102
[25]  
REMOISSENET M, 1989, P CMDS6 C DIJ, P313
[26]   DYNAMICS OF DENSE LATTICES [J].
ROSENAU, P .
PHYSICAL REVIEW B, 1987, 36 (11) :5868-5876
[27]   DYNAMICS OF NONLINEAR MASS-SPRING CHAINS NEAR THE CONTINUUM-LIMIT [J].
ROSENAU, P .
PHYSICS LETTERS A, 1986, 118 (05) :222-227
[28]  
SCOTT AC, 1962, PHYS REP, V217, P1
[29]  
TODA M, 1978, SPRINGER SERIES SOLI, V20
[30]  
WATTIS JAD, 1993, IN PRESS J PHYS A