STEEPEST DESCENT APPROXIMATION FOR THE FOKKER-PLANCK EQUATION

被引:17
作者
LANGOUCHE, F
ROEKAERTS, D
TIRAPEGUI, E
机构
[1] Instituut voor Theoretische Fysica, Univ. Leuven
来源
PHYSICA A | 1979年 / 97卷 / 01期
关键词
D O I
10.1016/0378-4371(79)90091-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The steepest descent approximation is used in the functional integral representation of the solution of the Fokker-Planck equation. The calculation includes the Gaussian integrals of fluctuations around the classical solution. The problem of the prescription dependence of the functional integral is solved previously by transforming the representation to one involving a prescription independent functional integral. © 1979.
引用
收藏
页码:195 / 205
页数:11
相关论文
共 9 条
[1]  
BACH A, 1978, PHYS LETT A, V68, P5, DOI 10.1016/0375-9601(78)90739-9
[2]  
BACH A, UNPUBLISHED
[3]  
Cukier R.I., 1973, J STAT PHYS, V9, P137
[4]   DIFFUSION PROCESSES AND THEIR PATHS [J].
DEKKER, H .
PHYSICS LETTERS A, 1978, 67 (02) :90-92
[5]   INTEGRATION IN FUNCTIONAL SPACES AND ITS APPLICATIONS IN QUANTUM PHYSICS [J].
GELFAND, IM ;
YAGLOM, AM .
JOURNAL OF MATHEMATICAL PHYSICS, 1960, 1 (01) :48-69
[6]  
GRAHAM R, 1975, FLUCTUATIONS INSTABI, P225
[7]   FUNCTIONAL INTEGRAL METHODS FOR STOCHASTIC FIELDS [J].
LANGOUCHE, F ;
ROEKAERTS, D ;
TIRAPEGUI, E .
PHYSICA A, 1979, 95 (02) :252-274
[8]   OPERATOR ORDERINGS AND FUNCTIONAL FORMULATIONS OF QUANTUM AND STOCHASTIC DYNAMICS [J].
LESCHKE, H ;
SCHMUTZ, M .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1977, 27 (01) :85-94
[9]  
Muhlschlegel B., 1978, PATH INTEGRALS THEIR