SOIL STABILIZATION BY A PROKARYOTIC DESERT CRUST - IMPLICATIONS FOR PRECAMBRIAN LAND BIOTA

被引:149
作者
CAMPBELL, SE
机构
[1] Department of Biology, Boston University, Boston, 02215, Mass.
来源
ORIGINS OF LIFE AND EVOLUTION OF THE BIOSPHERE | 1979年 / 9卷 / 04期
关键词
D O I
10.1007/BF00926826
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A cyanophyte dominated mat, desert crust, forms the ground cover in areas measuring hundreds of square meters in Utah and smaller patches in Colorado. The algal mat shows stromatolitic features such as sediment trapping and accretion, a convoluted surface, and polygonal cracking. Sand and clay particles are immobilized by a dense network of filaments of the two dominating cyanophyte species, Microcoleus vaginatus and M. chthonoplastes, which secrete sheaths to which particles adhere. These microorganisms can tolerate long periods of desiccation and are capable of instant reactivation and migration following wetting. Migration occurs in two events: 1. immediately following wetting of dry mat, trichomes are mechanically expelled from the sheath as it swells during rehydration, and 2. subsequently, trichomes begin a self-propelled gliding motility which is accompanied by further production of sheath. The maximum distance traveled on solid agar by trichomes of Microcoleus vaginatus during a 12 hour period of light was 4.8 cm. This corresponds to approximately 500 times the length of the fastest trichome, and provides a measure of the potential for spreading of the mat in nature via the motility of the trichomes. Dehydration resistence of the sheath modifies the extracellular environment of the trichomes and enables their transition to dormancy. Following prolonged wetting and evaporative drying of the mat in the laboratory, a smooth wafer-like crust is formed by the sheaths of Microcleus trichomes that have migrated to the surface. Calcium carbonate precipitates among the algal filaments under experimental conditions, indicating a potential for mat lithification and fossilization in the form of a caliche crust. It is suggested that limestones containing tubular microfossils may, in part, be of such an origin. The formation of mature Precambrian soils may be attributable to soil accretion, stabilization, and biogenic modification by blue-green algal land mats similar to desert crust. © 1979 D. Reidel Publishing Co.
引用
收藏
页码:335 / 348
页数:14
相关论文
共 25 条