MANY DIMENSIONAL U(1)SOLITONS, THEIR INTERACTIONS, RESONANCES AND BOUND-STATES

被引:9
作者
MAKHANKOV, VG
KUMMER, G
SHVACHKA, AB
机构
[1] Joint Institute for Nuclear Research, Laboratory of Computing Techniques and Automation, USSR, Moscow, 101000
来源
PHYSICA SCRIPTA | 1979年 / 20卷 / 3-4期
关键词
D O I
10.1088/0031-8949/20/3-4/022
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Head-on collisions of two-space dimensional U(1) solitons have been studied via computer in the framework ofthe Lorentz-invariant Klein-Gordon equation with a logarithmic non-linearity. Four different regions of parameters of the system (“charge” and velocity) have been found: (1) quasi-elastic soliton interaction (2) post-collisional decay of solitons (3) decay of solitons during resonance (4) bound (oscillating) states of solitons. The secondand the third types of phenomena have been found for the first time and have no analog in one space, one time dimension world. © 1979 IOP Publishing Ltd.
引用
收藏
页码:454 / 461
页数:8
相关论文
共 28 条
[1]  
ABDULLOEV KO, 1975, NUCL FUSION, V15, P21, DOI 10.1088/0029-5515/15/1/003
[2]  
ABLOWITZ MJ, UNPUBLISHED
[3]   STABILITY OF TIME-DEPENDENT PARTICLELIKE SOLUTIONS IN NONLINEAR FIELD THEORIES .1. [J].
ANDERSON, DL ;
DERRICK, GH .
JOURNAL OF MATHEMATICAL PHYSICS, 1970, 11 (04) :1336-&
[5]   DYNAMICS OF COLLISIONS OF 2 SPACE-DIMENSIONAL PULSONS IN PSI-4 FIELD-THEORY [J].
BOGOLUBSKY, IL ;
MAKHANKOV, VG ;
SHVACHKA, AB .
PHYSICS LETTERS A, 1977, 63 (03) :225-227
[6]   SINE-GORDON EQUATION AS A MODEL CLASSICAL FIELD-THEORY [J].
CAUDREY, PJ ;
EILBECK, JC ;
GIBBON, JD .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1975, B 25 (02) :497-512
[7]  
EILBECK JC, NLW678 HER WATT U DE
[8]   GAUGE-FIELD NON-TOPOLOGICAL SOLITONS IN 3 SPACE-DIMENSIONS .1. [J].
FRIEDBERG, R ;
LEE, TD ;
SIRLIN, A .
NUCLEAR PHYSICS B, 1976, 115 (01) :1-31
[9]   CLASS OF SCALAR-FIELD SOLITON SOLUTIONS IN 3 SPACE DIMENSIONS [J].
FRIEDBERG, R ;
LEE, TD ;
SIRLIN, A .
PHYSICAL REVIEW D, 1976, 13 (10) :2739-2761
[10]   FERMION-FIELD NON-TOPOLOGICAL SOLITONS [J].
FRIEDBERG, R ;
LEE, TD .
PHYSICAL REVIEW D, 1977, 15 (06) :1694-1711