FLUCTUATIONS WHEN E(X1)= INFINITY

被引:2
作者
WILLIAMSON, JA
机构
来源
ANNALS OF MATHEMATICAL STATISTICS | 1970年 / 41卷 / 03期
关键词
D O I
10.1214/aoms/1177696964
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:865 / +
页数:1
相关论文
共 11 条
[1]   CONVERGENCE RATES IN LAW OF LARGE NUMBERS [J].
BAUM, LE ;
KATZ, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 120 (01) :108-&
[2]   A NOTE ON STRONG LAW OF LARGE NUMBERS [J].
BINMORE, KG ;
KATZ, M .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1968, 74 (05) :941-&
[3]   ON A THEOREM OF HSU AND ROBBINS [J].
ERDOS, P .
ANNALS OF MATHEMATICAL STATISTICS, 1949, 20 (02) :286-291
[4]  
FELLER W, 1966, INTRODUCTION PROBABI, V2
[5]   COMPLETE CONVERGENCE AND THE LAW OF LARGE NUMBERS [J].
HSU, PL ;
ROBBINS, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1947, 33 (02) :25-31
[6]   ON THE CHARACTERISTICS OF THE GENERAL QUEUING PROCESS, WITH APPLICATIONS TO RANDOM-WALK [J].
KIEFER, J ;
WOLFOWITZ, J .
ANNALS OF MATHEMATICAL STATISTICS, 1956, 27 (01) :147-161
[7]  
SMITH WL, 1967, 5 P BERK S MATH STAT, P265
[8]  
Spitzer F., 1964, PRINCIPLES RANDOM WA, DOI [10.1007/978-1-4757-4229-9, DOI 10.1007/978-1-4757-4229-9]
[9]  
TAYLOR SJ, 1967, J MATH MECH, V16, P1229
[10]   RANDOM WALKS AND RIESZ KERNELS [J].
WILLIAMSON, JA .
PACIFIC JOURNAL OF MATHEMATICS, 1968, 25 (02) :393-+