VORTICES IN HOLOMORPHIC LINE BUNDLES OVER CLOSED KAHLER-MANIFOLDS

被引:216
作者
BRADLOW, SB [1 ]
机构
[1] STANFORD UNIV,DEPT MATH,STANFORD,CA 94305
关键词
D O I
10.1007/BF02097654
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We apply a modified Yang-Mills-Higgs functional to unitary bundles over closed Kahler manifolds and study the equations which govern the global minima. The solutions represent vortices in holomorphic bundles and are direct analogs of the vortices over R2. We obtain a complete description of the moduli space of these new vortices where the bundle is of rank one. The description is in terms of a class of divisors in the base manifold. There is also a dependence on a real valued parameter which can be attributed to the compactness of the base manifold.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 22 条
[1]   CONSTRUCTION OF INSTANTONS [J].
ATIYAH, MF ;
HITCHIN, NJ ;
DRINFELD, VG ;
MANIN, YI .
PHYSICS LETTERS A, 1978, 65 (03) :185-187
[2]   SELF-DUALITY IN 4-DIMENSIONAL RIEMANNIAN GEOMETRY [J].
ATIYAH, MF ;
HITCHIN, NJ ;
SINGER, IM .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1978, 362 (1711) :425-461
[3]  
BLEECKER D, 1981, GAUGE THEORY VARIATI
[4]  
BRADLOW S, 1988, THESIS U CHICAGO
[5]  
BRADLOW S, IN PRESS J DIFF GEOM
[6]   NAHM EQUATIONS AND THE CLASSIFICATION OF MONOPOLES [J].
DONALDSON, SK .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 96 (03) :387-407
[7]  
DONALDSON SK, 1983, J DIFFER GEOM, V18, P269
[8]  
DONALDSON SK, 1985, P LOND MATH SOC, V50, P1
[9]  
FREED DS, 1984, INSTANTONS 4 MANIFOL
[10]  
Ginsburg V. L., 1950, ZH EKSP TEOR FIZ, V20, P1064