FINITE-DIMENSIONAL QUASI-VARIATIONAL INEQUALITIES ASSOCIATED WITH DISCONTINUOUS FUNCTIONS

被引:20
作者
CUBIOTTI, P
机构
[1] Department of Mathematics, University of Messina, Messina
关键词
QUASI-VARIATIONAL INEQUALITIES; MULTIFUNCTIONS; FIXED POINTS; LOWER SEMICONTINUITY;
D O I
10.1007/BF00939843
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, given a nonempty closed convex set X subset-of-or-equal-to R(n), a function f: X --> R(n), and a multifunction GAMMA: X --> 2X, we deal with the problem of finding a point x triple-overdot is-an-element-of X such that x triple-overdot is-an-element-of GAMMA(x triple-overdot) and < f (x triple-overdot), x triple-overdot - y> less-than-or-equal-to 0, for all y is-an-element-of GAMMA(x triple-overdot). For such problem, we establish a result where, in particular, the function f is not assumed to be continuous. More precisely, we extend to the present setting a finite-dimensional version of a result by Ricceri on variational inequalities (Ref. 1).
引用
收藏
页码:577 / 582
页数:6
相关论文
共 9 条
[1]  
Aubin J.P., 1990, SET-VALUED ANAL, V2, DOI 10.1007/978-0-8176-4848-0
[3]   A PROPERTY OF INFINITE-DIMENSIONAL HILBERT-SPACES [J].
FRASCA, M ;
VILLANI, A .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1989, 139 (02) :352-361
[4]   FINITE-DIMENSIONAL VARIATIONAL INEQUALITY AND NONLINEAR COMPLEMENTARITY-PROBLEMS - A SURVEY OF THEORY, ALGORITHMS AND APPLICATIONS [J].
HARKER, PT ;
PANG, JS .
MATHEMATICAL PROGRAMMING, 1990, 48 (02) :161-220
[5]   ON SOME NON-LINEAR ELLIPTIC DIFFERENTIAL-FUNCTIONAL EQUATIONS [J].
HARTMAN, P ;
STAMPACCHIA, G .
ACTA MATHEMATICA UPPSALA, 1966, 115 (3-4) :271-+
[6]  
KIM WK, 1988, P AM MATH SOC, V103, P667
[7]  
MARANO SA, IN PRESS CONTROLLABI
[8]  
MARQUES MDP, 1984, SEMINAIRE ANAL CONVE
[9]  
RICCERI B, 1985, CR ACAD SCI I-MATH, V301, P885