ON CONTINUUM-THEORIES INVOLVING QUASI-LINEAR 1ST-ORDER NONCONSERVATIVE SYSTEMS WITH INVOLUTIONS AND A SUPPLEMENTARY INEQUALITY

被引:1
作者
CARDIN, F
ZANZOTTO, G
机构
[1] Dipartimento di Matematica Pura e Applicata, Università di Padova, Padova, 35131
关键词
D O I
10.1007/BF01128965
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this note we give a result of hyperbolicity for linearized quasilinear first order non-conservative systems with involutions and a supplementary inequality of conservative form. We also indicate some of the circumstances in which, for studying the evolution systems for a class of continua near their equilibria, such result can be applied. Some remarkable examples are the cases of a certain generalization of Landau's two-fluid scheme for superfluid Helium II, of a hyperelastic body acted upon by suitable live body forces, and of various other models appeared in the literature.
引用
收藏
页码:53 / 63
页数:11
相关论文
共 28 条
[1]  
Godunov S.K., An interesting class of quasilinear systems, Sov. Math., 2, (1961)
[2]  
Friedrichs K.O., Lax P.D., Systems of conservation equations with a convex extension, Proceedings of the National Academy of Sciences, 68, (1971)
[3]  
Friedrichs K.O., Conservation equations and the laws of motion in Classical Physics, Comm. on Pure and Appl. Math., 31, (1978)
[4]  
Boillat G., Sur l'existence et la recherche d'équations de conservation supplémentaires pour les systèmes hyperboliques, C.R. Acad. Sci. Paris, 278, (1974)
[5]  
Boillat G., Ruggeri T., Limite de la vitesse des chocs dans les champs à densité d'énergie convexe, C. R. Acad. Sci. Paris, 289, (1979)
[6]  
Ruggeri T., Strumia A., Main field and convex covariant density for quasilinear hyperbolic systems. Relativistic fluid dynamics, Ann. Inst. H. Poincaré, Sect. A, 34, (1981)
[7]  
Dafermos C.M., Hyperbolic systems of conservation laws, Proceedings of the NATO Advanced study Institute on “Systems of nonlinear partial differential equations”, (1982)
[8]  
Cardin F., Existence and uniqueness theorems for viscous fluids capable of heat conduction in a relativistic theory of non-stationary thermodynamics, Ann. Inst. H. Poincaré, Sect. A, 41, (1984)
[9]  
Boillat G., Symetrization des systèmes d'equations aux dérivées partielles avec densité d'energie convexe et contraintes, C. R. Acad. Sci. Paris, 295, (1982)
[10]  
Dafermos C.M., Quasilinear hyperbolic systems with involutions, Arch. Rat. Mech. Anal., 94, (1986)