POINTWISE ACCURACY OF A STABLE PETROV-GALERKIN APPROXIMATION TO THE STOKES PROBLEM

被引:7
作者
DURAN, RG
NOCHETTO, RH
机构
[1] INST MATH & APPLICAT, MINNEAPOLIS, MN 55455 USA
[2] IND QUIM PROGRAMA ESPECIAL MATEMAT APLICADA, INST DESARROLLO TECNOL, SANTA FE, ARGENTINA
关键词
D O I
10.1137/0726081
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:1395 / 1406
页数:12
相关论文
共 16 条
[1]   ESTIMATES NEAR THE BOUNDARY FOR SOLUTIONS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS SATISFYING GENERAL BOUNDARY CONDITIONS .1. [J].
AGMON, S ;
DOUGLIS, A ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1959, 12 (04) :623-727
[2]   STABILIZED MIXED METHODS FOR THE STOKES PROBLEM [J].
BREZZI, F ;
DOUGLAS, J .
NUMERISCHE MATHEMATIK, 1988, 53 (1-2) :225-235
[3]  
BREZZI F, 1974, REV FR AUTOMAT INFOR, V8, P129
[4]  
BREZZI F, UNPUB
[5]  
Cattabriga L, 1961, RENDICONTIDEL SEM MA, V31, P1
[6]  
Ciarlet P., 1978, FINITE ELEMENT METHO
[7]   SHARP MAXIMUM NORM ERROR-ESTIMATES FOR FINITE-ELEMENT APPROXIMATIONS OF THE STOKES PROBLEM IN 2-D [J].
DURAN, R ;
NOCHETTO, RH ;
WANG, JP .
MATHEMATICS OF COMPUTATION, 1988, 51 (184) :491-506
[8]  
DURAN R, IN PRESS MATH COMP
[9]  
Girault V, 2012, FINITE ELEMENT METHO, V5