Prediction of the stochastic behaviour of nonlinear systems by deterministic models as a classical time-passage probabilistic problem

被引:13
作者
Ivanov, L. M. [1 ]
Kirwan, A. D., Jr. [2 ]
Melnichenko, O. V. [1 ]
机构
[1] Marine Hydrophys Inst Ukrainian, Acad Sci, Sevastopol, Ukraine
[2] Old Dominion Univ, Ctr Coastal Phys Oceanog, Norfolk, VA 23529 USA
关键词
D O I
10.5194/npg-1-224-1994
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Assuming that the behaviour of a nonlinear stochastic system can be described by a Markovian diffusion approximation and that the evolution equations can be reduced to a system of ordinary differential equations, a method for the calculation of prediction time is developed. In this approach, the prediction time depends upon the accuracy of prediction, the intensity of turbulence, the accuracy of the initial conditions, the physics contained in the mathematical model, the measurement errors, and the number of prediction variables. A numerical application to zonal channel flow illustrates the theory. Some possible generalizations of the theory are also discussed.
引用
收藏
页码:224 / 233
页数:10
相关论文
共 18 条
[1]   FLUX-CORRECTED TRANSPORT .3. MINIMAL-ERROR FCT ALGORITHMS [J].
BORIS, JP ;
BOOK, DL .
JOURNAL OF COMPUTATIONAL PHYSICS, 1976, 20 (04) :397-431
[2]  
EREMEEV VN, 1988, MORSKOI HIDROFIZ J, V2, P32
[3]  
Gledzer E. B., 1981, SYSTEMS HYDRODYNAMIC
[4]  
HARMS DE, 1992, B AM METEOROL SOC, V73, P425, DOI 10.1175/1520-0477(1992)073<0425:AEOFDD>2.0.CO
[5]  
2
[6]  
Ivanov L.M, 1993, FRACTALS CHAOS PREDI, V13
[7]  
KLYATSKIN VI, 1980, STOCHASTIC EQUATIONS
[8]  
KOLMOGOROFF AN, 1962, DOKL AKAD NAUK SSSR+, V145, P993
[9]  
Kravtsov Y.A, 1986, RAZV FIZ NAUK, V158, P93
[10]  
KRAVTSOV YA, 1981, IZV VUZ RADIOFIZ+, V24, P992