GLOBAL ANALYTICITY OF A GEOMETRIC DECOMPOSITION FOR LINEAR SINGULARLY PERTURBED SYSTEMS

被引:10
作者
COBB, JD
机构
[1] Univ of Wisconsin, Madison, WI, USA, Univ of Wisconsin, Madison, WI, USA
关键词
MATHEMATICAL TECHNIQUES - State Space Methods;
D O I
10.1007/BF01600192
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A geometric decomposition is developed for linear, time-invariant singularly perturbed systems of a general form. The decomposition is shown to be determined by a mapping d between two real analytic manifolds, the range of d being a manifold of canonical forms. Our main result establishes analyticity of d over its entire domain.
引用
收藏
页码:139 / 152
页数:14
相关论文
共 14 条
[1]  
Akhiezer N. I., 1961, THEORY LINEAR OPERAT, VI
[2]  
Brickell F, 1970, DIFFERENTIABLE MANIF
[3]   SINGULAR PERTURBATION OF AUTONOMOUS LINEAR-SYSTEMS [J].
CAMPBELL, SL ;
ROSE, NJ .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1979, 10 (03) :542-551
[4]   A MORE SINGULAR SINGULARLY PERTURBED LINEAR-SYSTEM [J].
CAMPBELL, SL .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1981, 26 (02) :507-510
[5]  
CHpbe1l S.L., 1980, SINGULAR SYSTEMS DIF
[6]   FEEDBACK AND POLE PLACEMENT IN DESCRIPTOR VARIABLE SYSTEMS [J].
COBB, D .
INTERNATIONAL JOURNAL OF CONTROL, 1981, 33 (06) :1135-1146
[7]  
COBB JD, 1980, THESIS U ILLINOIS
[8]  
Gantmacher F. R., 1960, THEORY MATRICES, V1
[9]   SINGULAR PERTURBATIONS AND ORDER REDUCTION IN CONTROL-THEORY - OVERVIEW [J].
KOKOTOVIC, PV ;
OMALLEY, RE ;
SANNUTI, P .
AUTOMATICA, 1976, 12 (02) :123-132
[10]  
O'Malley R.E., 1974, INTRO SINGULAR PERTU