PROLONGATION STRUCTURE WITHOUT PROLONGATION

被引:9
作者
DOKTOROV, EV
机构
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1980年 / 13卷 / 12期
关键词
D O I
10.1088/0305-4470/13/12/009
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:3599 / 3604
页数:6
相关论文
共 18 条
[1]  
CHERN SS, 1956, COMPLEX MANIFOLDS
[2]   LIE GROUP FRAMEWORK FOR SOLITON EQUATIONS .1. PATH INDEPENDENT CASE [J].
CORONES, J ;
MARKOVSKI, BL ;
RIZOV, VA .
JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (11) :2207-2213
[3]   SOLITONS AND SL(2,R) [J].
CRAMPIN, M .
PHYSICS LETTERS A, 1978, 66 (03) :170-172
[4]   SOLITON CONNECTION [J].
CRAMPIN, M ;
PIRANI, FAE ;
ROBINSON, DC .
LETTERS IN MATHEMATICAL PHYSICS, 1977, 2 (01) :15-19
[5]   PROLONGATION STRUCTURES OF A CLASS OF NON-LINEAR EVOLUTION EQUATIONS [J].
DODD, RK ;
GIBBON, JD .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1978, 359 (1699) :411-433
[6]  
DRECHSLER W, 1977, LECTURE NOTES PHYSIC, V67
[7]  
DUBROVIN BA, 1979, MODERN GEOMETRY
[8]  
DUBROVIN BA, 1976, USP MAT NAUK, V31, P55
[9]   METHOD FOR SOLVING KORTEWEG-DEVRIES EQUATION [J].
GARDNER, CS ;
GREENE, JM ;
KRUSKAL, MD ;
MIURA, RM .
PHYSICAL REVIEW LETTERS, 1967, 19 (19) :1095-&
[10]   PSEUDOPOTENTIALS OF ESTABROOK AND WAHLQUIST, GEOMETRY OF SOLITONS, AND THEORY OF CONNECTIONS [J].
HERMANN, R .
PHYSICAL REVIEW LETTERS, 1976, 36 (15) :835-836