ON THE THERMODYNAMIC FORMALISM FOR THE GAUSS MAP

被引:90
作者
MAYER, DH
机构
[1] Max-Planck-Institut für Mathematik, Bonn 3, D-5300
关键词
D O I
10.1007/BF02473355
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the generalized transfer operator ℒ β f(z)= {Mathematical expression} of the Gauss map Tx=(1/x) mod 1 on the unit interval. This operator, which for β=1 is the familiar Perron-Frobenius operator of T, can be defined for Re β>1/2 as a nuclear operator either on the Banach space A ∞(D) of holomorphic functions over a certain disc D or on the Hilbert space ℋ Reβ (2) (H -1/2 of functions belonging to some Hardy class of functions over the half plane H -1/2. The spectra of - β on the two spaces are identical. On the space ℋ Reβ (2) (H -1/2 ℒ β is isomorphic to an integral operator K β with kernel the Bessel function {Mathematical expression} and hence to some generalized Hankel transform. This shows that ℒ β has real spectrum for real β>1/2. On the space A ∞(D) the operator ℒ β can be analytically continued to the entire β-plane with simple poles at β=β k =(1-k)/2, k=0, 1, 2,..., and residue the rank 1 operator N (k) f=1/2(1/K!)f (k)(0) . From this similar analyticity properties for the Fredholm determinant det (1-ℒ β ) of ℒ β and hence also for Ruelle's zeta function follow. Another application is to the function {Mathematical expression}, where [n] denotes the irradional [n]=(n+(n 2+4)1/2)/2.ζ M (β) extends to a meromorphic function in the β-plane with the only poles at β=±1 both with residue 1. © 1990 Springer-Verlag.
引用
收藏
页码:311 / 333
页数:23
相关论文
共 26 条
[1]  
ABRAMOWITZ M, 1972, HDB MATH FUNCTIONS F, P362
[2]   ERGODIC THEORY OF AXIOM A FLOWS [J].
BOWEN, R ;
RUELLE, D .
INVENTIONES MATHEMATICAE, 1975, 29 (03) :181-202
[3]  
Bowen R., 1979, I HAUTES ETUDES SCI, V50, P153
[4]  
BOWEN R, 1975, LECTURE NOTES MATH, V470
[5]  
Duren P., 1970, THEORY HPSPACES
[6]  
ERDELYI A, 1953, HIGH TRANSCENDENTAL, V1, P26
[7]  
Gradshteyn I.S., 1965, TABLES OF INTEGRALS
[8]  
Grothendieck A., 1956, B SOC MATH FRANCE, V84, P319, DOI DOI 10.24033/BSMF.1476
[9]   STRONGLY MIXING G-MEASURES [J].
KEANE, M .
INVENTIONES MATHEMATICAE, 1972, 16 (04) :309-&
[10]  
Lasota A., 1985, PROBABILISTIC PROPER