RELATIVISTIC QUANTUM-FIELD THEORY WITH FRACTIONAL SPIN AND STATISTICS

被引:31
作者
FORTE, S
JOLICOEUR, T
机构
[1] Service de Physique Théorique, CEN Saclay
关键词
D O I
10.1016/0550-3213(91)90157-S
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We construct a relativistic quantum field theory in 2 + 1 dimensions whose Fock states provide a multivalued representation of the Poincare group. We add a topological term to the action of a scalar field theory and we show that this endows the path integral of the theory with an operator-valued cocycle which modifies the transformation properties of physical states. We demonstrate that one-particle states carry (in general) fractional spin. We determine the spin of many-particle states and we prove a generalized spin-statistics relation. We propose an equation of motion for on-shell states which generalizes naturally the Dirac equation.
引用
收藏
页码:589 / 620
页数:32
相关论文
共 21 条
[1]  
BALACHANDRAN AP, 1983, GAUGE THEORIES FIBRE
[2]   RELATIVISTIC FIELD-THEORIES IN 3 DIMENSIONS [J].
BINEGAR, B .
JOURNAL OF MATHEMATICAL PHYSICS, 1982, 23 (08) :1511-1517
[3]   FRACTIONAL SPIN VIA CANONICAL QUANTIZATION OF THE O(3) NONLINEAR SIGMA MODEL [J].
BOWICK, MJ ;
KARABALI, D ;
WIJEWARDHANA, LCR .
NUCLEAR PHYSICS B, 1986, 271 (02) :417-428
[4]  
CHOQUETBRUHAT Y, 1989, ANAL MANIFOLDS PHYSI
[5]  
CHOQUETBRUHAT Y, 1982, ANAL MANIFOLDS PHYSI
[6]  
DOUBROVINE B, 1979, GEOMETRIE CONT, V2
[7]  
FROHLICH J, 1989, KNOTS TOPOLOGY QUANT
[8]   ARE CYONS REALLY ANYONS [J].
GOLDHABER, AS ;
MACKENZIE, R .
PHYSICS LETTERS B, 1988, 214 (03) :471-474
[9]   COMMENT ON CANONICAL QUANTUM-FIELD THEORY WITH EXOTIC STATISTICS [J].
HAGEN, CR .
PHYSICAL REVIEW LETTERS, 1989, 63 (09) :1025-1025
[10]  
JACKIW R, 1985, CURRENT ALGEBRA ANOM