Integrability of the chiral equations with torsion term

被引:37
作者
Ward, R. S. [1 ]
机构
[1] Univ Durham, Dept Math Sci, Durham DH1 3LE, England
关键词
D O I
10.1088/0951-7715/1/4/009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The chiral equation, for maps into a non-Abelian group, is only integrable in two-dimensional spacetime. If, however, one adds a torsion term, then integrability in higher dimensions can be achieved. But the Painleve test indicates that dimension four is as far as one can go.
引用
收藏
页码:671 / 679
页数:9
相关论文
共 20 条
[1]  
Ablowitz MJ., 1981, SOLITONS INVERSE SCA, DOI [10.1137/1.9781611970883, DOI 10.1137/1.9781611970883]
[2]   TORSION AND GEOMETROSTASIS IN NONLINEAR SIGMA-MODELS [J].
BRAATEN, E ;
CURTRIGHT, TL ;
ZACHOS, CK .
NUCLEAR PHYSICS B, 1985, 260 (3-4) :630-688
[3]  
DEVEGA HJ, 1987, COMMUN MATH PHYS, V116, P659
[4]   TWISTED CHIRAL MODELS WITH WESS-ZUMINO TERMS, AND STRINGS [J].
FORGER, M ;
ZIZZI, P .
NUCLEAR PHYSICS B, 1987, 287 (01) :131-143
[5]  
GOLDBERG SI, 1962, CURVATURE HOMOLOGY, pCH4
[6]  
Ince EL., 1927, ORDINARY DIFFERENTIA
[7]   PAINLEVE TEST FOR THE SELF-DUAL YANG-MILLS EQUATION [J].
JIMBO, M ;
KRUSKAL, MD ;
MIWA, T .
PHYSICS LETTERS A, 1982, 92 (02) :59-60
[8]   A UNIFIED APPROACH TO PAINLEVE EXPANSIONS [J].
NEWELL, AC ;
TABOR, M ;
ZENG, YB .
PHYSICA D, 1987, 29 (1-2) :1-68
[9]  
PIETTE B, 1987, SOLUTIONS U N MODELS