1ST-ORDER TRANSITION IN A SPIN-GLASS MODEL

被引:44
作者
DACOSTA, FA [1 ]
YOKOI, CSO [1 ]
SALINAS, SRA [1 ]
机构
[1] UNIV SAO PAULO,INST FIS,BR-01498970 SAO PAULO,BRAZIL
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1994年 / 27卷 / 10期
关键词
D O I
10.1088/0305-4470/27/10/011
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a generalization of the infinite-range Sherrington-Kirkpatrick spin glass model with arbitrary spin S and the inclusion of crystal-field effects. For integer S, replica-symmetric calculations have shown the presence of both continuous and discontinuous transitions and a tricritical point. For S = 1, we report a detailed numerical analysis of the replica-symmetric solutions. We locate the first-order boundary and clarify some inconsistencies of the previous analyses. Some analytic asymptotic expansions are used to support the numerical findings.
引用
收藏
页码:3365 / 3372
页数:8
相关论文
共 8 条
[1]  
Abramowitz M., 1965, HDB MATH FUNCTIONS
[2]  
da Costa F A, 1990, REV BRAS FIS, V20, P49
[3]  
DACOSTA FA, 1990, THESIS U SAO PAULO
[4]   CRYSTAL-FIELD EFFECTS IN A GENERAL S-ISING SPIN GLASS [J].
GHATAK, SK ;
SHERRINGTON, D .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1977, 10 (16) :3149-3156
[5]  
LAGE EJS, 1982, J PHYS C SOLID STATE, V15, P1187
[6]  
Mezard M., 1987, SPIN GLASS THEORY IN, V9
[7]   STABILITY OF A CRYSTAL-FIELD SPLIT SPIN-GLASS [J].
MOTTISHAW, PJ ;
SHERRINGTON, D .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1985, 18 (26) :5201-5213
[8]   SOLVABLE MODEL OF A SPIN-GLASS [J].
SHERRINGTON, D ;
KIRKPATRICK, S .
PHYSICAL REVIEW LETTERS, 1975, 35 (26) :1792-1796