ON THE LARGE DEFLECTIONS OF NONPRISMATIC CANTILEVERS WITH A FINITE DEPTH

被引:25
作者
BAKER, G
机构
[1] Department of Civil Engineering, University of Queensland, St Lucia
关键词
D O I
10.1016/0045-7949(93)90201-N
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The large deflection profiles of tapered cantilevers under arbitrarily distributed loads are obtained through a weighted residual solution of the governing Bernoulli-Euler equation. The effect of a finite depth on deflections is studied for the range of beam geometries over which Bernoulli-Euler equation is applicable. Results are given for a variety of load shapes and geometries.
引用
收藏
页码:365 / 370
页数:6
相关论文
共 11 条
[1]  
BAKER G, IN PRESS EXACT DEFLE
[2]  
BAKER G, 1985, NUMETA 85 NUMERICAL, P945
[3]  
BISHHOPP KE, 1945, Q APPL MATH, V3, P272
[4]  
Hasegawa A., 1986, J FAC ENG U TOKYO, V38, P19, DOI [10.1061/(ASCE)0733-9399(2001)127:8(769), DOI 10.1061/(ASCE)0733-9399(2001)127:8(769)]
[5]  
HOUTIS EN, 1983, INT J NUMER METH ENG, V19, P665
[6]  
RAO BN, 1988, RES MECH, V24, P349
[7]  
RHODE FV, 1953, Q APPL MATH, V11, P337
[8]  
STEIN E, 1982, FINITE ELASTICITY, P379
[9]  
Tada Y., 1970, International Journal for Numerical Methods in Engineering, V2, P229, DOI 10.1002/nme.1620020208
[10]  
Wang T. M., 1973, J ENG MECH DIV ASCE, V99, P919