NORMAL FORMS FOR 3-DIMENSIONAL PARAMETRIC-INSTABILITIES IN IDEAL HYDRODYNAMICS

被引:31
作者
KNOBLOCH, E
MAHALOV, A
MARSDEN, JE
机构
[1] UNIV CALIF BERKELEY,DEPT MATH,BERKELEY,CA 94720
[2] ARIZONA STATE UNIV,DEPT MATH,TEMPE,AZ 85287
来源
PHYSICA D | 1994年 / 73卷 / 1-2期
基金
美国国家科学基金会;
关键词
D O I
10.1016/0167-2789(94)90225-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive and analyze several low dimensional Hamiltonian normal forms describing system symmetry breaking in ideal hydrodynamics. The equations depend on two parameters (epsilon, lambda), where epsilon is the strength of a system symmetry breaking perturbation and lambda is a detuning parameter. In many cases the resulting equations are completely integrable and have an interesting Hamiltonian structure. Our work is motivated by three-dimensional instabilities of rotating columnar fluid flows with circular streamlines (such as the Burger vortex) subjected to precession, elliptical distortion or off-center displacement.
引用
收藏
页码:49 / 81
页数:33
相关论文
共 47 条
[1]   ON THE EXPLICIT SYMMETRY-BREAKING IN THE TAYLOR-COUETTE PROBLEM [J].
ARMBRUSTER, D ;
MAHALOV, A .
PHYSICS LETTERS A, 1992, 167 (03) :251-254
[2]   3-DIMENSIONAL INSTABILITY OF ELLIPTIC FLOW [J].
BAYLY, BJ .
PHYSICAL REVIEW LETTERS, 1986, 57 (17) :2160-2163
[3]   INSTABILITY OF PERIODIC WAVETRAINS IN NONLINEAR DISPERSIVE SYSTEMS [J].
BENJAMIN, TB .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1967, 299 (1456) :59-&
[4]  
BLOCH AM, 1993, DISSIPATION INDUCED
[5]  
CRAWFORD JD, 1992, PHYSICA D, V52, P429
[6]   REDUCTION OF THE SEMISIMPLE 1-1 RESONANCE [J].
CUSHMAN, R ;
ROD, DL .
PHYSICA D, 1982, 6 (01) :105-112
[7]   HOPF-BIFURCATION WITH BROKEN CIRCULAR SYMMETRY [J].
DANGELMAYR, G ;
KNOBLOCH, E .
NONLINEARITY, 1991, 4 (02) :399-427
[8]   GENERIC BIFURCATION OF HAMILTONIAN VECTOR-FIELDS WITH SYMMETRY [J].
DELLNITZ, M ;
MELBOURNE, I ;
MARSDEN, JE .
NONLINEARITY, 1992, 5 (04) :979-996
[9]   ON THE EXISTENCE OF CHAOS IN A CLASS OF 2-DEGREE-OF-FREEDOM, DAMPED, STRONGLY PARAMETRICALLY FORCED MECHANICAL SYSTEMS WITH BROKEN O(2) SYMMETRY [J].
FENG, Z ;
WIGGINS, S .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1993, 44 (02) :201-248
[10]   SYMMETRY-BREAKING BIFURCATIONS IN RESONANT SURFACE-WAVES [J].
FENG, ZC ;
SETHNA, PR .
JOURNAL OF FLUID MECHANICS, 1989, 199 :495-518