LOCAL-TIMES FOR BROWNIAN-MOTION ON THE SIERPINSKI CARPET

被引:27
作者
BARLOW, MT [1 ]
BASS, RF [1 ]
机构
[1] UNIV WASHINGTON,DEPT MATH,SEATTLE,WA 98195
关键词
D O I
10.1007/BF01377631
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Jointly continuous local times are constructed for Brownian motion on the Sierpinski carpet. A consequence is that the Brownian motion hits points. The method used is to analyze a sequence of eigenvalue problems. © 1990 Springer-Verlag.
引用
收藏
页码:91 / 104
页数:14
相关论文
共 14 条
[1]  
[Anonymous], 1984, WADSWORTH ADV BOOKS
[2]  
BARLOW MT, 1989, ANN I H POINCARE-PR, V25, P225
[3]   BROWNIAN-MOTION ON THE SIERPINSKI GASKET [J].
BARLOW, MT ;
PERKINS, EA .
PROBABILITY THEORY AND RELATED FIELDS, 1988, 79 (04) :543-623
[4]   EXACT FRACTALS WITH ADJUSTABLE FRACTAL AND FRACTION DIMENSIONALITIES [J].
BENAVRAHAM, D ;
HAVLIN, S .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (15) :L559-L563
[5]  
Blumenthal R.M., 1968, MARKOV PROCESSES POT
[6]  
COURANT R, 1953, METHODS MATH PHYSICS, V1
[7]  
Dellacherie C., 1980, PROBABILITES POTENTI
[8]  
DOYLE PG, 1984, RANDOM WALKS ELECTRI
[9]  
Gilbarg D., 1977, ELLIPTIC PARTIAL DIF, V224
[10]  
Goldstein S., 1987, PERCOLATION THEORY E, P121