THE FREE-ENERGY OF THE POTTS-MODEL - FROM THE CONTINUOUS TO THE 1ST-ORDER TRANSITION REGION

被引:18
作者
BHATTACHARYA, T [1 ]
LACAZE, R [1 ]
MOREL, A [1 ]
机构
[1] SERV PHYS THEOR SACLAY,F-91191 GIF SUR YVETTE,FRANCE
来源
EUROPHYSICS LETTERS | 1993年 / 23卷 / 08期
关键词
D O I
10.1209/0295-5075/23/8/002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a large-q expansion of the 2d q-states Potts model free energies up to order 9 in 1/square-root q. Its analysis leads us to an ansatz which, in the first-order region, incorporates properties inferred from the known critical regime at q = 4, and predicts, for q > 4, the n-th energy cumulant scales as the power (3n/2 - 2) of the correlation length. The parameter-free energy distributions reproduce accurately, without reference to any interface effect, the numerical data obtained in a simulation for q = 10 with lattices of linear dimensions up to L = 50. The pure-phase specific heats are predicted to be much larger, at q less-than-or-equal-to 10, than the values extracted from the current finite-size scaling analysis of the extrema. Implications for safe numerical determinations of interface tensions are discussed.
引用
收藏
页码:547 / 552
页数:6
相关论文
共 22 条
[1]   POTTS MODEL AT CRITICAL-TEMPERATURE [J].
BAXTER, RJ .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1973, 6 (23) :L445-L448
[2]  
BERG B, 1992, P COMPUTER SIMULATIO
[3]  
BHATTACHARYA T, UNPUB
[4]   A NUMERICAL STUDY OF FINITE-SIZE SCALING FOR 1ST-ORDER PHASE-TRANSITIONS [J].
BILLOIRE, A ;
LACAZE, R ;
MOREL, A .
NUCLEAR PHYSICS B, 1992, 370 (03) :773-796
[5]  
BILLOIRE A, IN PRESS NUCL PHYS B
[6]  
BILLOIRE A, UNPUB DETERMINATION
[8]   FINITE SIZE SCALING ANALYSIS OF ISING-MODEL BLOCK DISTRIBUTION-FUNCTIONS [J].
BINDER, K .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1981, 43 (02) :119-140
[9]   A RIGOROUS THEORY OF FINITE-SIZE SCALING AT 1ST-ORDER PHASE-TRANSITIONS [J].
BORGS, C ;
KOTECKY, R .
JOURNAL OF STATISTICAL PHYSICS, 1990, 61 (1-2) :79-119
[10]   FINITE-SIZE SCALING FOR POTTS MODELS [J].
BORGS, C ;
KOTECKY, R ;
MIRACLESOLE, S .
JOURNAL OF STATISTICAL PHYSICS, 1991, 62 (3-4) :529-551