CONVERGENCE OF A FINITE-ELEMENT METHOD FOR NONPARAMETRIC MEAN-CURVATURE FLOW

被引:30
作者
DECKELNICK, K
DZIUK, G
机构
[1] Institut für Angewandte Mathematik, Freiburg I.Br, D-79104, Hermann-Herder-Str.
关键词
D O I
10.1007/s002110050166
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Convergence for the spatial discretization by linear finite elements of the non-parametric mean curvature flow is proved under natural regularity assumptions on the continuous solution. Asymptotic convergence is also obtained for the time derivative which is proportional to mean curvature. An existence result for the continuous problem in adequate spaces is included.
引用
收藏
页码:197 / 222
页数:26
相关论文
共 9 条
[2]  
FREHSE J, 1976, GLEICHMASSIGE ASYMPT
[3]  
FREHSE J, 1977, Z ANGEW MATH MECH, V57, P229
[4]   NON-PARAMETRIC MEAN-CURVATURE EVOLUTION WITH BOUNDARY-CONDITIONS [J].
HUISKEN, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1989, 77 (02) :369-378
[5]  
JOHNSON C, 1975, MATH COMPUT, V29, P343, DOI 10.1090/S0025-5718-1975-0400741-X
[6]  
RANNACHER R, 1977, RAIRO-ANAL NUMER-NUM, V11, P181
[7]  
WANDTKE U, 1991, THESIS BONN
[8]   CURVED ELEMENTS IN FINITE-ELEMENT METHOD .1. [J].
ZLAMAL, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1973, 10 (01) :229-240
[9]   CURVED ELEMENTS IN FINITE-ELEMENT METHOD .2. [J].
ZLAMAL, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1974, 11 (02) :347-362