A NEW APPROACH TO THE DYNAMIC MAINTENANCE OF MAXIMAL POINTS IN A PLANE

被引:14
作者
FREDERICKSON, GN
RODGER, S
机构
[1] Department of Computer Sciences, Purdue University, West Lafayette, 47907, IN
关键词
D O I
10.1007/BF02187797
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A point pi=(xi, yi) in the x-y plane is maximal if there is no point pj=(xj, yj) such that xj>xi and yj>yi. We present a simple data structure, a dynamic contour search tree, which contains all the points in the plane and maintains an embedded linked list of maximal points so that m maximal points are accessible in O(m) time. Our data structure dynamically maintains the set of points so that insertions take O(log n) time, a speedup of O(log n) over previous results, and deletions take O((log n)2) time. © 1990 Springer-Verlag New York Inc.
引用
收藏
页码:365 / 374
页数:10
相关论文
共 4 条
[1]   FINDING MAXIMA OF A SET OF VECTORS [J].
KUNG, HT ;
LUCCIO, F ;
PREPARATA, FP .
JOURNAL OF THE ACM, 1975, 22 (04) :469-476
[2]   MAINTENANCE OF CONFIGURATIONS IN THE PLANE [J].
OVERMARS, MH ;
VANLEEUWEN, J .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1981, 23 (02) :166-204
[3]   UPDATING A BALANCED SEARCH TREE IN O(1) ROTATIONS [J].
TARJAN, RE .
INFORMATION PROCESSING LETTERS, 1983, 16 (05) :253-257
[4]   ADDING RANGE RESTRICTION CAPABILITY TO DYNAMIC DATA-STRUCTURES [J].
WILLARD, DE ;
LUEKER, GS .
JOURNAL OF THE ACM, 1985, 32 (03) :597-617